Foundations of Computer Science
Lecture 12:
Procedural Programming
& Recap

Anil Madhavapeddy & Amanda Prorok
2019-2020

‘References: ML Versus Conventional Languages'

 We must write !p to get the contents of p
* We write just p for the address of p

* \We can store private reference cells in functions;
simulating object oriented programming

e OCaml's assignment syntax is
V.=FEinsteadof V =F

e OCaml has similar control structures: while/done,
for/done and match/with

e OCaml has short syntax for updating arrays x. (1)
and the access is safe against buffer overflows

‘What More Is There to ML?I

With references, we can now make mutable linked lists

type 'a mlist =
| Nil
| Cons of 'a * 'a mlist ref
type 'a mlist = Nil | Cons of 'a * 'a mlist ref

i~ — -

‘References to References'

Two ways to visualize references to references:

(1) Using pointers:

IS e B S o S

(2) Using nested boxes:

=

Nil

‘Linked (Mutable) ListsI

type 'a mlist =
| Nil
| Cons of 'a * 'a mlist ref
type 'a mlist = Nil | Cons of 'a * 'a mlist ref

— The tail can be redirected!

‘Linked (Mutable) ListsI

type 'a mlist =
| Nil
| Cons of 'a * 'a mlist ref
type 'a mlist = Nil | Cons of 'a * 'a mlist ref

— The tail can be redirected!

creates a hew pointer to rest of mlist
let rec mlistOf = function
| [1 -> Nil
| x :: 1 -> Cons (x, ref (mlistOf 1))
mlist : 'a list -> 'a mlist = <fun>

‘Extending a List to the RearI

Fwimﬁ&r\g to a ‘box’

~

let extend mlp x =
let last = ref Nil in
mlp := Cons (x, last);
last

> val extend

fn : ‘a mlist ref * ‘a -> ‘a mlist ref

mip

@

‘Extending a List to the RearI

Fwimﬁ&r\g to a ‘box’

~

let extend mlp x =
let last = ref Nil in
mlp := Cons (x, last);
last

> val extend

fn : ‘a mlist ref * ‘a -> ‘a mlist ref

Example of Extending a ListI

let mlp = ref (Nil: string mlist);;

val mlp : string mlist ref = {contents = Nil}
extend mlp "a";;

— : string mlist ref = {contents = Nil}

Example of Extending a ListI

let mlp = ref (Nil : string mlist);;
val mlp : string mlist ref = {contents = Nil}

let it = extend mlp "a" ;;

val it : string mlist ref {contents = Nil}

let it = extend it "b" ;;
— : String mlist ref = {contents = Nil}
mlp ;;
- : String mlist ref =
{contents = Cons ("a”",
{contents = Cons ("b", {contents = Nil})})}

it

it

it

ref (Cons (x, ref (Cons (v, ref Nil))))

‘ Destructive Concatenation I

pointing to a ‘box’ contents of a ‘box’

N 4

let rec joining mlp ml2 =
match !mlp with
| Nil -> mlp := ml2
| Cons (_, mlpl) -> joining mlpl ml2
val joining : 'a mlist ref * 'a mlist -> unit = <fun>

let join mll ml2 =
let mlp = ref mll in
joining mlp ml2;
!mlp
val join : 'a mlist -> 'a mlist -> 'a mlist = <fun>

‘Side-EffectsI

let mll = mlistOf ["a"];;

val mll : string mlist = Cons ("a", {contents
let ml2 = mlistOof ["b";:"c"];;

val ml2 : string mlist =

Cons ("b", {contents = Cons ("c", {contents = Nil})})
join mll ml2 ;;

Nil})

What does this return?

‘Side-EffectsI

let mll = mlistOf ["a"];;

val mll : string mlist = Cons ("a", {contents
let ml2 = mlistOof ["b";:"c"];;

val ml2 : string mlist =

Cons ("b", {contents = Cons ("c", {contents = Nil})})
join mll ml2 ;;

Nil})

What does this return?

— : string mlist =
Cons ("a",
{contents = Cons ("b",
{contents = Cons ("c", {contents = Nil})})})

Functional
Programming

Let's Recap

Goals of Programming

* to describe a computation so that it can be done mechanically:
* expressions compute values
* commands cause effects
* to do so efficiently and correctly, giving right answers quickly
e to allow easy modification as our needs change
e through an orderly structure based on abstraction principles

e programmer should be able to predict effects of changes

Why Program in OCaml?

* |tis interactive.

e [t has a flexible notion of data type.

* |t hides the underlying hardware: no crashes.

* Programs can easily be understood mathematically.
* |t distinguishes naming from updating memory.

* |t manages storage in memory for us.

Language
Static type
checking

Parametric
Polymorphism

| Abstraction
Algebraic Data

First Class
Functions

Static type # let x = "1" + 1 ;;
checking Error: This expression has type string but

an expression was expected of type int

Static type # let x = "1" + 1 ;;
checking Error: This expression has type string but

an expression was expected of type int

1A Object Oriented Programming
Dr Andrew Rice

Parametric # type 'a tree =
Polymorphism | Lf

| Br of 'a * 'a tree * 'a tree

Type Inference # let fn 1 = List.map (fun (a,b) ->
string of int a "~ b) 1;;

val fn : (int * string) list -> string 1list
= <fun>

_ 1B Concepts in
Parametric]
Polymorphism Programming Languages

1B Further Java

Il Types

Algebraic Data # type vehicle =
Types | Car of bool

| Motorbike of int

: | Bicycle
Pattern Matching

First Class
Functions

type vehicle =
| Car of bool
| Motorbike of int
| Bicycle

Algebraic Data
Types

Pattern Matching

match v with
| car false -> "car"

First Class . :
| Car true -> "reliant robin"

Functions

1B Semantics of Programming Languages

type vehicle =
| Car of bool
| Motorbike of int
| Bicycle

Algebraic Data
Types

Pattern Matching

match v with
| car false -> "car"

First Class . :
| Car true -> "reliant robin"

Functions

Language
Static type
checking

Parametric
Polymorphism

| Abstraction
Algebraic Data

First Class
Functions

Fast Foreign
Functions

Static Linking

Garbage
Collection

Execution

Fast Native Code

Multiarchitecture

Portable Bytecode

Fast Foreign

Functions Upcoming Courses:
Static Linking]
1A Operating Systems
ooade 1B Compiler Construction

1B Programming in C/C++

1B Concurrent &
Multiarchitecture Distributed Systems

Fast Native Code

Portable Bytecode

OCaml: a system

Language

Fast Foreign

F Tt Pattern Matching

Static Linking Algebraic Data
Types
Garbage

Type Inference
Collection yp

First Class

Fast Native Code _
Functions

Static type

Multiarchitecture .
checking

Parametric

Portable Bytecode Polymorphism

OCaml (& ML): Influences

gA

Fast Foreign

Functions Pattern Matching

M.
et D
I3 V |
V&
(i
i
A
it LN
L5 v |
Vo
(i
L
.
— el U7
Vo
[
(i
i
W
'3 R
J— %
» . § Ve
)l
\
O
A\
- 3 N
2 v
s DS
\
%

Algebraic Data

Static Linking T
ypes

Garbage

Type Inference
Collection yP

First Class

Fast Native Code !
Functions

Static type

Multiarchitecture .
checking

Parametric
Polymorphism

. 9 9 | Y X &
"\ b, m il
N . 4 L 3 3 3t i1
W §! i1 : :
X\ y . ; ;
i i i >4
! i 2
\ : : B
) ! » J
N E . 3 — s'v
!)

Portable Bytecode

OCamil: Applications

gA

Flexibility

Language

- e ‘
- o]
—
e

-]

Fast Foreign

Functions Pattern Matching

Algebraic Data

Static Linking T
ypes

Garbage

Type Inference
Collection yP

@ Microcontrollers

Proof Static

First Class

Fast Native Code !
Functions

Static type

Multiarchitecture .
checking

Parametric
Polymorphism

Assistants Analysis

Portable Bytecode

OCaml: Web Programming q
/\

Flexibility

https://reasonml.github.io

Reason lets you write
simple, fast and quality
type safe code while
leveraging both the
JavaScript & OCaml
ecosystems.

////

https://reasonml.github.io
https://reasonml.github.io

OCaml: Building Hardware

Flexibility

OCaPIC: PIC microcontrollers programmed in

OCaml

Microcontrollers

HardCaml is a structural hardware
design DSL embedded in OCaml.
The library can be used for front end
design tasks up to the synthesis
stage where a VHDL or Verilog
netlist is generated. Libraries for fast
simulation using LLVM, waveform
viewing and co-simulation with lcarus
Verilog are provided.

[@] orRCONF2015

Writing hardware in OCaml,
Running OCaml in hardware
Andrew Ray

HardCaml-RiscV is a simple
pipelined RV32I core, targetted

towards a FPGA implementation and
built with HardCaml.

https://www.youtube.com/watch?v=0COX5OfCtbo
https://www.youtube.com/watch?v=0COX5OfCtbo

OCaml: Operating Systems s

M'RA GE (DS Bog Docs APl Canopy Community

A programming framework for building type-safe, modular systems

MirageOS is a library operating system that constructs unikernels for

secure, high-performance network applications across a variety of N Recent Updates au
cloud computing and mobile platforms. Code can be developed on a

normal OS such as Linux or MacOS X, and then compiled into a fully- $ MirageOS running on the ESP32 embedded chip (26 Jan 2018)

9 MirageOS Winter 2017 hack retreat roundup (23 Dec 2017)

https://mirage.io

https://mirage.io

OCamil: Safety Critical

FLOWIS ASTATICTYPE
CHECKER FOR JAVASCRIPT.

GET STARTED INSTALL FLOW

dene About Coq Get Coq Documen tation

The Coq Proof Assistant

https://coq.inria.fr

gl Proof Static
Assistants Analysis

https://coq.inria.fr

OCaml: Predictable Robots!

Creating safe robots with Imandra

Kostya Kanishev

Jul 9,2018 - 3 min read

From self-driving cars to medical surgeons, robots have become ubiquitous.
Ensuring they operate safely and correctly is evermore important. The most
popular middleware for robotics is the open-sourced Robot OS. We have begun

work on developing an Imandra interface to Robot OS, opening up the world of

robotics to the latest advancements in automated reasoning. In this post, we
showcase our early results, discuss our roadmap and our submission for a talk
at the upcoming ROSCon 2018 (Madrid, Spain).

www.imandra.ai

Proof Static

Assistants Analysis

https://www.imandra.ai

OCaml: Data Science

Flexibility

: . Y

T . THE
(B
I_'l

OCaml Scientific Computing

ocaml.xyz

https://ocaml.xyz

Goals of Programming

* to describe a computation so that it can be done mechanically:
* expressions compute values
* commands cause effects
* to do so efficiently and correctly, giving right answers quickly
e to allow easy modification as our needs change
e through an orderly structure based on abstraction principles

e programmer should be able to predict effects of changes

