
Foundations of Computer Science
Lecture 12:

Procedural Programming
& Recap

Anil Madhavapeddy & Amanda Prorok

2019-2020

References: ML Versus Conventional LanguagesReferences: ML Versus Conventional Languages

• We must write !p to get the contents of p
• We write just p for the address of p

• We can store private reference cells in functions;
simulating object oriented programming

• OCaml's assignment syntax is 
 instead of

• OCaml has similar control structures: while/done,
for/done and match/with

• OCaml has short syntax for updating arrays
and the access is safe against buffer overflows

V := E V = E

x . (1)

What More Is There to ML?What More Is There to ML?

type 'a mlist =
 | Nil
 | Cons of 'a * 'a mlist ref
type 'a mlist = Nil | Cons of 'a * 'a mlist ref

With references, we can now make mutable linked lists

XII Foundations of Computer Science 139

Slide 1211

What More is There to ML?

You can easily create linked (mutable) lists.

3 5 9 9 9 9 Nil

7

datatype 'a mlist = Nil

| Cons of 'a * 'a mlist ref;

• Libraries interfacing to various operating systems and services

• Modules: structures, signatures and functors

• Threads and “futures” packages for multi-core programming

It is worth mentioning that ML’s references fully suffice for coding the sort of
linked data structures taught in algorithms courses, and is illustrated in the figure
above. The programming style is a little different from the usual, but the princi-
ples are the same. There are many examples in ML for the Working Programmer,
pages 326–340. ML also provides comprehensive input/output primitives for vari-
ous types of file and operating system.

ML’s system of modules include structures, which can be seen as encapsulated
groups of declarations, and signatures, which are specifications of structures list-
ing the name and type of each component. Finally, there are functors, which are
analogous to functions that combine a number of argument structures, and which
can be used to plug program components together. These primitives are useful for
managing large programming projects.

This lecture course has used Standard ML as a basis for teaching the basic prin-
ciples of programming. However, ML was designed primarily for writing research
software, especially for automated theorem proving. Substantial software can be
coded in ML. The Isabelle proof checker includes over 150,000 lines of Standard
ML, structured as purely functional modules connected by Poly/ML’s threads pack-
age (a nonstandard language extension) to provide effective parallelism. For exam-
ple, on an eight-core machine, a speed-up of six is not unusual. And Standard ML’s
sister language, OCaml, is also heavily used both in research and even in the finance
sector. While C and Java dominate the scene, there is some room for languages that
not only achieve reasonable performance but avoid the worst programming hazards
and have a hope of producing the right answers.

References to References

3 5 9 Nil

3 5 9

(1) Using pointers:

(2) Using nested boxes:

References to References

Two ways to visualize references to references:

Linked (Mutable) Lists

→ The tail can be redirected!

let rec mlistOf = function
 | [] -> Nil
 | x :: l -> Cons (x, ref (mlistOf l))
mlist : 'a list -> 'a mlist = <fun>

Linked (Mutable) Lists

creates a new pointer to rest of mlist

type 'a mlist =
 | Nil
 | Cons of 'a * 'a mlist ref
type 'a mlist = Nil | Cons of 'a * 'a mlist ref

Linked (Mutable) Lists

→ The tail can be redirected!

let rec mlistOf = function
 | [] -> Nil
 | x :: l -> Cons (x, ref (mlistOf l))
mlist : 'a list -> 'a mlist = <fun>

Linked (Mutable) Lists

creates a new pointer to rest of mlist

type 'a mlist =
 | Nil
 | Cons of 'a * 'a mlist ref
type 'a mlist = Nil | Cons of 'a * 'a mlist ref

Extending a List to the Rear

let extend mlp x =
 let last = ref Nil in
 mlp := Cons (x, last);
 last
> val extend = fn : ‘a mlist ref * ‘a -> ‘a mlist ref

Extending a List to the Rear

mlp

last
Nil

pointing to a ‘box’

Extending a List to the Rear

let extend mlp x =
 let last = ref Nil in
 mlp := Cons (x, last);
 last
> val extend = fn : ‘a mlist ref * ‘a -> ‘a mlist ref

Extending a List to the Rear

mlp

last
Nil

x

pointing to a ‘box’

Example of Extending a List

let mlp = ref (Nil: string mlist);;
val mlp : string mlist ref = {contents = Nil}

extend mlp "a";;
- : string mlist ref = {contents = Nil}

let mlp = ref (Nil : string mlist);;
val mlp : string mlist ref = {contents = Nil}

let it = extend mlp "a" ;;
val it : string mlist ref = {contents = Nil}

extend it "b" ;;
- : string mlist ref = {contents = Nil}

mlp ;;
- : string mlist ref =
{contents = Cons ("a",
 {contents = Cons ("b", {contents = Nil})})}

Example of Extending a List

Example of Extending a List

let mlp = ref (Nil: string mlist);;
val mlp : string mlist ref = {contents = Nil}

extend mlp "a";;
- : string mlist ref = {contents = Nil}

let mlp = ref (Nil : string mlist);;
val mlp : string mlist ref = {contents = Nil}

let it = extend mlp "a" ;;
val it : string mlist ref = {contents = Nil}

let it = extend it "b" ;;
- : string mlist ref = {contents = Nil}

mlp ;;
- : string mlist ref =
{contents = Cons ("a",
 {contents = Cons ("b", {contents = Nil})})}

Example of Extending a List

mlp

Nillast

mlp

Nil

x

last

mlp

it Nil

x

last

mlp x

Nillast

it

mlp x

y

Nillast

it

mlp x

y

Nilit

mlp x

y

Nilit

 ref (Cons (x, ref (Cons (y, ref Nil))))

Destructive Concatenation

let rec joining mlp ml2 =
 match !mlp with
 | Nil -> mlp := ml2
 | Cons (_, mlp1) -> joining mlp1 ml2
val joining : 'a mlist ref * 'a mlist -> unit = <fun>
 
let join ml1 ml2 =
 let mlp = ref ml1 in
 joining mlp ml2;
 !mlp
val join : 'a mlist -> 'a mlist -> 'a mlist = <fun>

Destructive Concatenation

pointing to a ‘box’ contents of a ‘box’

Side-Effects

let ml1 = mlistOf ["a"];;
val ml1 : string mlist = Cons ("a", {contents = Nil})
let ml2 = mlistOf ["b";"c"];;
val ml2 : string mlist =
 Cons ("b", {contents = Cons ("c", {contents = Nil})})
join ml1 ml2 ;;

- : string mlist =
Cons ("a",
 {contents = Cons ("b",
 {contents = Cons ("c", {contents = Nil})})})

Side-Effects

What does this return?

Side-Effects

let ml1 = mlistOf ["a"];;
val ml1 : string mlist = Cons ("a", {contents = Nil})
let ml2 = mlistOf ["b";"c"];;
val ml2 : string mlist =
 Cons ("b", {contents = Cons ("c", {contents = Nil})})
join ml1 ml2 ;;

- : string mlist =
Cons ("a",
 {contents = Cons ("b",
 {contents = Cons ("c", {contents = Nil})})})

Side-Effects

What does this return?

Functional
Programming

Let's Recap

Goals of Programming
• to describe a computation so that it can be done mechanically:

• expressions compute values

• commands cause effects

• to do so efficiently and correctly, giving right answers quickly

• to allow easy modification as our needs change

• through an orderly structure based on abstraction principles

• programmer should be able to predict effects of changes

Why Program in OCaml?
• It is interactive.

• It has a flexible notion of data type.

• It hides the underlying hardware: no crashes.

• Programs can easily be understood mathematically.

• It distinguishes naming from updating memory.

• It manages storage in memory for us.

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Pattern Matching

Language

Abstraction}

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Pattern Matching

Language

let x = "1" + 1 ;;
Error: This expression has type string but
an expression was expected of type int

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Pattern Matching

Language

let x = "1" + 1 ;;
Error: This expression has type string but
an expression was expected of type int

1A Object Oriented Programming
Dr Andrew Rice

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Pattern Matching

Language

type 'a tree =
 | Lf
 | Br of 'a * 'a tree * 'a tree

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Pattern Matching

Language

let fn l = List.map (fun (a,b) ->
 string_of_int a ^ b) l;;

val fn : (int * string) list -> string list
= <fun>

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Pattern Matching

Language

1B Concepts in
Programming Languages

1B Further Java

II Types

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Pattern Matching

Language

type vehicle =
 | Car of bool
 | Motorbike of int
 | Bicycle

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Pattern Matching

Language

type vehicle =
 | Car of bool
 | Motorbike of int
 | Bicycle

match v with
 | Car false -> "car"
 | Car true -> "reliant robin"
 ...

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Pattern Matching

Language

1B Semantics of Programming Languages

type vehicle =
 | Car of bool
 | Motorbike of int
 | Bicycle

match v with
 | Car false -> "car"
 | Car true -> "reliant robin"
 ...

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Pattern Matching

Language

Abstraction}

Garbage
Collection

Fast Native Code

Portable Bytecode

Static Linking

Multiarchitecture

Fast Foreign
Functions

Runtime

Execution}

Garbage
Collection

Fast Native Code

Portable Bytecode

Static Linking

Multiarchitecture

Fast Foreign
Functions

Runtime

1A Operating Systems
1B Compiler Construction
1B Programming in C/C++

Upcoming Courses:

1B Concurrent &
Distributed Systems

Garbage
Collection

Fast Native Code

Portable Bytecode

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Static Linking

Multiarchitecture

Fast Foreign
Functions Pattern Matching

Runtime Language

OCaml: a system

Garbage
Collection

Fast Native Code

Portable Bytecode

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Static Linking

Multiarchitecture

Fast Foreign
Functions Pattern Matching

Runtime Language

JavaScript

Common
Lisp

C#

Java

F#

C++

Scala

Rust

Elm

Influenced

Python

OCaml (& ML): Influences

OCaml: Applications

Garbage
Collection

Fast Native Code

Portable Bytecode

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Static Linking

Multiarchitecture

Fast Foreign
Functions Pattern Matching

Runtime Language

JavaScript

Unikernels

FPGAs

Flexibility

Containers

Microcontrollers

Wasm

Proof
Assistants

Static
Analysis

Unix Mobile

OCaml: Web Programming

Garbage
Collection

Fast Native Code

Portable Bytecode

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Static Linking

Multiarchitecture

Fast Foreign
Functions Pattern Matching

Runtime Language

JavaScript

Flexibility

https://reasonml.github.io

Wasm

Reason lets you write
simple, fast and quality

type safe code while
leveraging both the
JavaScript & OCaml

ecosystems.

https://reasonml.github.io
https://reasonml.github.io

OCaml: Building Hardware

Garbage
Collection

Fast Native Code

Portable Bytecode

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Static Linking

Multiarchitecture

Fast Foreign
Functions Pattern Matching

Runtime Language

FPGAs

Flexibility

Microcontrollers

HardCaml is a structural hardware
design DSL embedded in OCaml.
The library can be used for front end
design tasks up to the synthesis
stage where a VHDL or Verilog
netlist is generated. Libraries for fast
simulation using LLVM, waveform
viewing and co-simulation with Icarus
Verilog are provided.

HardCaml-RiscV is a simple
pipelined RV32I core, targetted
towards a FPGA implementation and
built with HardCaml.

https://www.youtube.com/watch?v=0COX5OfCtbo
https://www.youtube.com/watch?v=0COX5OfCtbo

OCaml: Operating Systems

Garbage
Collection

Fast Native Code

Portable Bytecode

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Static Linking

Multiarchitecture

Fast Foreign
Functions Pattern Matching

Runtime Language

Unikernels

Flexibility

Containers

Unix Mobile

https://mirage.io

https://mirage.io

Garbage
Collection

Fast Native Code

Portable Bytecode

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Static Linking

Multiarchitecture

Fast Foreign
Functions Pattern Matching

Runtime Language Flexibility

Proof
Assistants

Static
Analysis

https://coq.inria.fr

OCaml: Safety Critical

https://coq.inria.fr

Garbage
Collection

Fast Native Code

Portable Bytecode

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Static Linking

Multiarchitecture

Fast Foreign
Functions Pattern Matching

Runtime Language Flexibility

Proof
Assistants

Static
Analysis

www.imandra.ai

OCaml: Predictable Robots!

https://www.imandra.ai

Garbage
Collection

Fast Native Code

Portable Bytecode

First Class
Functions

Static type
checking

Parametric
Polymorphism

Type Inference

Algebraic Data
Types

Static Linking

Multiarchitecture

Fast Foreign
Functions Pattern Matching

Runtime Language Flexibility

ocaml.xyz

OCaml: Data Science

https://ocaml.xyz

Goals of Programming
• to describe a computation so that it can be done mechanically:

• expressions compute values

• commands cause effects

• to do so efficiently and correctly, giving right answers quickly

• to allow easy modification as our needs change

• through an orderly structure based on abstraction principles

• programmer should be able to predict effects of changes

