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Intro

let rec addLen n = function
  | [] -> n
  | x :: xs -> addLen (n+1) xs

Example: 
addLen 0 [1,2,3]

Intro

Calling addLen with same arguments will always produce 
the same result. We can infer result through function 
expansion and reduction of expressions. This allows us to:


→  Prove algorithm correctness

→  Understand and predict algorithm outcome
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Procedural Programming

Procedural programs can change the machine state.

They can interact with its environment.

They use control structures like branching, iteration and procedures.

They use data abstractions of the computer’s memory:

• references to memory cells

• arrays: blocks of memory cells

• linked structures, especially linked lists

Procedural programming is programming in the traditional sense of the word.
A program state is repeatedly transformed by the execution of commands or state-

ments. A state change might be local to the machine and consist of updating a
variable or array. A state change might consist of sending data to the outside world.
Even reading data counts as a state change, since this act normally removes the data
from the environment.

Procedural programming languages provide primitive commands and control
structures for combining them. The primitive commands include assignment, for
updating variables, and various input/output commands for communication. Con-
trol structures include if and case constructs for conditional execution, and repet-
itive constructs such as while. Programmers can package up their own commands
as procedures taking arguments. The need for such ‘subroutines’ was evident from
the earliest days; they represent one of the first examples of abstraction in program-
ming languages.

ML makes no distinction between commands and expressions. ML provides
built-in ‘functions’ to perform assignment and communication, and these can be
used in the traditional (procedural) style. ML programmers normally follow a func-
tional style for most internal computations and use imperative features mainly for
communication with the outside world.

concept: memory cells that are mutable 

Procedural Programming

a) update variable / array 
b) sending / receiving data



What are References?What are References?

• References are storage locations

• They can be:


(a) created

(b) inspected

(c) updated

In functional programming:

The store is an invisible device inside the computer


In procedural / imperative programming:

The store is visible

313

box

value

The box has an address
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ML Primitives for References

τ ref type of references to type τ

ref E create a reference

initial contents = the value of E

!P return the current contents of reference P

P := E update the contents of P to the value of E

The slide presents the ML primitives, but most languages have analogues of
them, often heavily disguised. We need a means of creating references (or allocating
storage), getting at the current contents of a reference cell, and updating that cell.

The function ref creates references (also called locations). Calling ref allo-
cates a new location in memory. Initially, this location holds the value given by
expression E . Although ref is an ML function, it is not a function in the mathe-
matical sense. For example, ref(0)=ref(0) evaluates to false.

The function !, when applied to a reference, returns its contents. This operation
is called dereferencing. Clearly ! is not a mathematical function; its result depends
upon the store.

The assignment P:=E evaluates expression P , which must return a reference p,
and E . It stores at address p the value of E . Syntactically, := is a function and
P:=E is an expression, even though it updates the store. Like many functions that
change the state, it returns the value () of type uni t .

If τ is some ML type, then τ ref is the type of references to cells that can hold
values of τ . Please do not confuse the type ref with the function ref. This table of
the primitive functions and their types might be useful:

ref ’a -> ’a ref

! ’a ref -> ’a

op := ’a ref * ’a -> unit

ML Primitives for References

P for ‘pointer’

‘dereferencing’

pointer to a ‘box’ contents of that ‘box’
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ML Primitives for References

τ ref type of references to type τ

ref E create a reference

initial contents = the value of E

!P return the current contents of reference P

P := E update the contents of P to the value of E

The slide presents the ML primitives, but most languages have analogues of
them, often heavily disguised. We need a means of creating references (or allocating
storage), getting at the current contents of a reference cell, and updating that cell.

The function ref creates references (also called locations). Calling ref allo-
cates a new location in memory. Initially, this location holds the value given by
expression E . Although ref is an ML function, it is not a function in the mathe-
matical sense. For example, ref(0)=ref(0) evaluates to false.

The function !, when applied to a reference, returns its contents. This operation
is called dereferencing. Clearly ! is not a mathematical function; its result depends
upon the store.

The assignment P:=E evaluates expression P , which must return a reference p,
and E . It stores at address p the value of E . Syntactically, := is a function and
P:=E is an expression, even though it updates the store. Like many functions that
change the state, it returns the value () of type uni t .

If τ is some ML type, then τ ref is the type of references to cells that can hold
values of τ . Please do not confuse the type ref with the function ref. This table of
the primitive functions and their types might be useful:

ref ’a -> ’a ref

! ’a ref -> ’a

op := ’a ref * ’a -> unit

Three new ML functions / operators:

ML Primitives for References

(a) create box
(b) inspect box content
(c) update box content

P for ‘pointer’

‘dereferencing’

pointer to a ‘box’ contents of that ‘box’

ref : 'a -> 'a ref
!   : 'a ref -> 'a
:=  : 'a ref -> 'a -> unit 



Trying Out ReferencesTrying Out References

# let p = ref 5 (* create a reference *)
val p : int ref = {contents = 5}

# p := !p + 1   (* p now holds value 6 *)
-: unit = ()

# let ps = [ ref 77; p ]
val ps : int ref list = [{contents = 77}; {contents = 6}]

# List.hd ps := 3
-: unit = ()

# ps
- : int ref list = [{contents = 3}; {contents = 6}]



Aliasing: two values refer to the same mutable cell

Trying Out ReferencesTrying Out References

# let p = ref 5 (* create a reference *)
val p : int ref = {contents = 5}

# let z = p
val z : int ref = {contents = 5}

# p := !p + 1   (* p now holds value 6 *)
-: unit = ()

# p
- : int ref = {contents = 6}

# z
- : int ref = {contents = 6}
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Commands: Expressions with Effects

• Basic commands update references, write to files, etc.

• C1;. . . ;Cn causes a series of expressions to be evaluated and

returns the value of Cn .

• A typical command returns the empty tuple: ()

• if B then C1 else C2 behaves like the traditional

control structure if C1 and C2 have effects.

• Other ML constructs behave naturally with commands, including

case expressions and recursive functions.

We use the term command informally to refer to an expression that has an effect
on the state. All expressions denote some value, but they can return (), which
conveys no actual information.

We need a way to execute one command after another. The construct
C1;. . . ;Cn evaluates the expressions C1 to Cn in the order given and returns the
value of Cn . The values of the other expressions are discarded; their only purpose
is to change the state.

Commands may be used with if and case much as in conventional languages.
ML functions play the role of procedures.

Other languages that combine the functional and imperative programming
paradigms include Lisp (and its dialect Scheme), Objective Caml, and even a sys-
tems programming language, BLISS (now long extinct).

Commands: Expressions with Effects

> 1 + (print_endline "abc"; 3; 101);Example:

match
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Commands: Expressions with Effects

• Basic commands update references, write to files, etc.

• C1;. . . ;Cn causes a series of expressions to be evaluated and

returns the value of Cn .

• A typical command returns the empty tuple: ()

• if B then C1 else C2 behaves like the traditional

control structure if C1 and C2 have effects.

• Other ML constructs behave naturally with commands, including

case expressions and recursive functions.

We use the term command informally to refer to an expression that has an effect
on the state. All expressions denote some value, but they can return (), which
conveys no actual information.

We need a way to execute one command after another. The construct
C1;. . . ;Cn evaluates the expressions C1 to Cn in the order given and returns the
value of Cn . The values of the other expressions are discarded; their only purpose
is to change the state.

Commands may be used with if and case much as in conventional languages.
ML functions play the role of procedures.

Other languages that combine the functional and imperative programming
paradigms include Lisp (and its dialect Scheme), Objective Caml, and even a sys-
tems programming language, BLISS (now long extinct).

Commands: Expressions with Effects

> 1 + (print_endline "abc"; 3; 101);

abc
- : int = 102

Example:

match



Example: length without Mutability

addLen 0 [1,2,3]
addLen 1 [2,3]
addLen 2 [3]
addLen 3 []
==> returns 3

Example: length with MutabilityExample: length without Mutability

let rec addLen n = function
  | [] -> n
  | x :: xs -> addLen (n+1) xs



Iteration: the while CommandIteration: the while Command

# let tlopt = function
  | [] -> None
  | _::xs -> Some xs
val tlopt : 'a list -> 'a list option = <fun>

# let length xs =
    let lp  = ref xs in (* list of uncounted elements *)
    let np  = ref 0  in (* accumulated count *)
    let fin = ref false in
    while not !fin do
      match tlopt !lp with
      | None -> fin := true
      | Some xs ->
          lp := xs;
          np := 1 + !np
    done;
    !np (* the final count is returned *)
val length : 'a list -> int = <fun>
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Iteration: the while CommandIteration: the while Command

# let tlopt = function
  | [] -> None
  | _::xs -> Some xs
val tlopt : 'a list -> 'a list option = <fun>
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    let lp  = ref xs in (* list of uncounted elements *)
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Example: length with Mutability

length([1;2;3])
==> lp = ref [1,2,3]

evaluation steps:

Iteration: the while CommandExample: length with Mutability



Example: length with Mutability

length([1;2;3])
==> lp = ref [1,2,3]

tlopt [1;2;3] != None  ==> true
lp := [2,3]; np := 1+0;

evaluation steps:

Iteration: the while CommandExample: length with Mutability



Example: length with Mutability

length([1;2;3])
==> lp = ref [1,2,3]

tlopt [1;2;3] != None  ==> true
lp := [2,3]; np := 1+0;

tlopt [2;3] != None    ==> true
lp := [3]; np := 1+1

evaluation steps:

Iteration: the while CommandExample: length with Mutability



Example: length with Mutability

length([1;2;3])
==> lp = ref [1,2,3]

tlopt [1;2;3] != None  ==> true
lp := [2,3]; np := 1+0;

tlopt [2;3] != None    ==> true
lp := [3]; np := 1+1

tlopt [3] != None      ==> true
lp := []; np := 1+2

evaluation steps:

Iteration: the while CommandExample: length with Mutability



Example: length with Mutability

length([1;2;3])
==> lp = ref [1,2,3]

tlopt [1;2;3] != None  ==> true
lp := [2,3]; np := 1+0;

tlopt [2;3] != None    ==> true
lp := [3]; np := 1+1

tlopt [3] != None      ==> true
lp := []; np := 1+2

tlopt [] != None       ==> false
fin := true
==> return !np  
==> returns 3

evaluation steps:

Iteration: the while CommandExample: length with Mutability



# exception TooMuch of int
exception TooMuch of int
# let makeAccount initBalance =
    let balance = ref initBalance in
    let withdraw amt =
       if amt > !balance then
         raise (TooMuch (amt - !balance))
       else begin
         balance := !balance - amt;
         !balance
       end
    in
    withdraw
val makeAccount : int -> int -> int = <fun>

Private, Persistent ReferencesPrivate, Persistent References

returns a function that 
returns contents of 
‘balance’, not the cell itself



# exception TooMuch of int
exception TooMuch of int
# let makeAccount initBalance =
    let balance = ref initBalance in
    let withdraw amt =
       if amt > !balance then
         raise (TooMuch (amt - !balance))
       else begin
         balance := !balance - amt;
         !balance
       end
    in
    withdraw
val makeAccount : int -> int -> int = <fun>

Private, Persistent ReferencesPrivate, Persistent References

returns a function that 
returns contents of 
‘balance’, not the cell itself

balance never escapes the 
definition of makeAccount



let my_account = makeAccount 30;

Private, Persistent ReferencesPrivate, Persistent References



let my_account = makeAccount 30;

my_account : int -> int = <fun>

Private, Persistent ReferencesPrivate, Persistent References



let my_account = makeAccount 30;

let my_new_balance = my_account 10;

my_account : int -> int = <fun>

Private, Persistent ReferencesPrivate, Persistent References



let my_account = makeAccount 30;

let my_new_balance = my_account 10;

my_account : int -> int = <fun>

my_new_balance : int = 20

Private, Persistent ReferencesPrivate, Persistent References



let my_account = makeAccount 30;

let my_new_balance = my_account 10;

let my_new_balance = my_account ~10;

my_account : int -> int = <fun>

my_new_balance : int = 20

Private, Persistent ReferencesPrivate, Persistent References



let my_account = makeAccount 30;

let my_new_balance = my_account 10;

let my_new_balance = my_account ~10;

my_new_balance : int = 30

my_account : int -> int = <fun>

my_new_balance : int = 20

Private, Persistent ReferencesPrivate, Persistent References



Two Bank AccountsTwo Bank Accounts

# let student = makeAccount 500
val student : int -> int = <fun>

# let director = makeAccount 4000000
val director : int -> int = <fun>

# student 5        (* coach fare *)
- : int = 495

# director 150000  (* Tesla *)
- : int = 3850000

# student 500      (* oh oh *)
Exception: TooMuch 5.



ML Primitives for ArraysML Primitives for Arrays

# [|"a"; "b"; "c"|]
  (* allocate a fresh string array *)
- : string array = [|"a"; "b"; "c"|]

# Array.make 3 'a' 
  (* array of size 3 with cell containing 'a' *)
- : char array = [|'a'; 'a'; 'a'|]

# let aa = Array.init 5 (fun i -> i * 10)
  (* array of size 5 initialised to (fun i) *)
val aa : int array = [|0; 10; 20; 30; 40|]

# Array.get aa 3 
(* retrieve the 4th cell in the array *)
- : int = 30

# Array.set aa 3 42
(* set the 4th cell's value to 42 *)
- : unit = ()



Array ExamplesArray Examples

# Array.make
- : int -> 'a -> 'a array = <fun>

# Array.init
- : int -> (int -> 'a) -> 'a array = <fun>

# Array.get
- : 'a array -> int -> 'a = <fun>

# Array.set
- : 'a array -> int -> 'a -> unit = <fun>



References: ML Versus Conventional LanguagesReferences: ML Versus Conventional Languages

• We must write !p to get the contents of p
• We write just p for the address of p

• We can store private reference cells in functions; 
simulating object oriented programming


• OCaml's assignment syntax is 
 instead of 


• OCaml has similar control structures: while/done, 
for/done and match/with

• OCaml has short syntax for updating arrays  
and the access is safe against buffer overflows

V := E V = E

x . (1)



What More Is There to ML?What More Is There to ML?

# type 'a mlist =
  | Nil
  | Cons of 'a * 'a mlist ref
type 'a mlist = Nil | Cons of 'a * 'a mlist ref

With references, we can now make mutable linked lists
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What More is There to ML?

You can easily create linked (mutable) lists.

3 5 9 9 9 9 Nil 

7 

datatype 'a mlist = Nil

| Cons of 'a * 'a mlist ref;

• Libraries interfacing to various operating systems and services

• Modules: structures, signatures and functors

• Threads and “futures” packages for multi-core programming

It is worth mentioning that ML’s references fully suffice for coding the sort of
linked data structures taught in algorithms courses, and is illustrated in the figure
above. The programming style is a little different from the usual, but the princi-
ples are the same. There are many examples in ML for the Working Programmer,
pages 326–340. ML also provides comprehensive input/output primitives for vari-
ous types of file and operating system.

ML’s system of modules include structures, which can be seen as encapsulated
groups of declarations, and signatures, which are specifications of structures list-
ing the name and type of each component. Finally, there are functors, which are
analogous to functions that combine a number of argument structures, and which
can be used to plug program components together. These primitives are useful for
managing large programming projects.

This lecture course has used Standard ML as a basis for teaching the basic prin-
ciples of programming. However, ML was designed primarily for writing research
software, especially for automated theorem proving. Substantial software can be
coded in ML. The Isabelle proof checker includes over 150,000 lines of Standard
ML, structured as purely functional modules connected by Poly/ML’s threads pack-
age (a nonstandard language extension) to provide effective parallelism. For exam-
ple, on an eight-core machine, a speed-up of six is not unusual. And Standard ML’s
sister language, OCaml, is also heavily used both in research and even in the finance
sector. While C and Java dominate the scene, there is some room for languages that
not only achieve reasonable performance but avoid the worst programming hazards
and have a hope of producing the right answers.



References to References

3 5 9 Nil

3 5 9

(1) Using pointers:

(2) Using nested boxes:

References to References

Two ways to visualize references to references:



Linked (Mutable) Lists

→  The tail can be redirected!

# let rec mlistOf = function
  | [] -> Nil
  | x :: l -> Cons (x, ref (mlistOf l))
mlist : 'a list -> 'a mlist = <fun>

Linked (Mutable) Lists

creates a new pointer to rest of mlist

# type 'a mlist =
  | Nil
  | Cons of 'a * 'a mlist ref
type 'a mlist = Nil | Cons of 'a * 'a mlist ref



Extending a List to the Rear

# let extend mlp x =
  let last = ref Nil in
  mlp := Cons (x, last);
  last
> val extend = fn : ‘a mlist ref * ‘a -> ‘a mlist ref

Extending a List to the Rear

mlp

last
Nil

pointing to a ‘box’



Extending a List to the Rear

# let extend mlp x =
  let last = ref Nil in
  mlp := Cons (x, last);
  last
> val extend = fn : ‘a mlist ref * ‘a -> ‘a mlist ref

Extending a List to the Rear

mlp

last
Nil

x

pointing to a ‘box’



Example of Extending a List

# let mlp = ref (Nil: string mlist);;
val mlp : string mlist ref = {contents = Nil}

# extend mlp "a";;
- : string mlist ref = {contents = Nil}

# let mlp = ref (Nil : string mlist);;
val mlp : string mlist ref = {contents = Nil}

# let it = extend mlp "a" ;;
val it : string mlist ref = {contents = Nil}

# extend it "b" ;;
- : string mlist ref = {contents = Nil}

# mlp ;;
- : string mlist ref =
{contents = Cons ("a", 
  {contents = Cons ("b", {contents = Nil})})}

Example of Extending a List



mlp

Nillast



mlp

Nil

x

last



mlp

it Nil

x

last



mlp x

Nillast

it



mlp x

y

Nillast

it



mlp x

y

Nilit



mlp x

y

Nilit

 ref (Cons (x, ref (Cons (y, ref Nil))))



Destructive Concatenation

# let rec joining mlp ml2 =
  match !mlp with
  | Nil -> mlp := ml2
  | Cons (_, mlp1) -> joining mlp1 ml2
val joining : 'a mlist ref * 'a mlist -> unit = <fun>
 
# let join ml1 ml2 =
  let mlp = ref ml1 in
  joining mlp ml2;
  !mlp
val join : 'a mlist -> 'a mlist -> 'a mlist = <fun>

Destructive Concatenation

pointing to a ‘box’ contents of a ‘box’



Side-Effects

# let ml1 = mlistOf ["a"];;
val ml1 : string mlist = Cons ("a", {contents = Nil})
# let ml2 = mlistOf ["b";"c"];;
val ml2 : string mlist =
  Cons ("b", {contents = Cons ("c", {contents = Nil})})
# join ml1 ml2 ;;

Side-Effects

What does this return?



Side-Effects

# let ml1 = mlistOf ["a"];;
val ml1 : string mlist = Cons ("a", {contents = Nil})
# let ml2 = mlistOf ["b";"c"];;
val ml2 : string mlist =
  Cons ("b", {contents = Cons ("c", {contents = Nil})})
# join ml1 ml2 ;;

- : string mlist =
Cons ("a",
 {contents = Cons ("b",
   {contents = Cons ("c", {contents = Nil})})})

Side-Effects

What does this return?


