
Foundations of Computer Science
Lecture #10: Search

Anil Madhavapeddy & Amanda Prorok

2019-2020

> let promote = prefix "Professor ";
let promote : string -> string = <fun>

> prefix "Mrs. " "Johnson";;
- : string = "Mrs. Johnson"

> promote "Johnson";;
- : string = "Professor Johnson"

 prefix a b (prefix a) b
string -> string -> string string -> (string -> string)

Review: Curried FunctionsReview: Curried Functions

The -> symbol associates to the right

> let prefix a b = a ^ b;;
val prefix : string -> string -> string = <fun>

Expressions are evaluated from left to right (left -assoc.)

partial application: fix first arg.
Example:

<=>

A

B C

D E

Pre-order ? In-order ? Post-order ?

 Warm-Up Warm-Up

A

B C

D E

Pre-order ? In-order ? Post-order ?

 Warm-Up Warm-Up

A - B - D - E - C

A

B C

D E

Pre-order ? In-order ? Post-order ?

 Warm-Up Warm-Up

A - B - D - E - C D - B - E - A - C

A

B C

D E

Pre-order ? In-order ? Post-order ?

 Warm-Up Warm-Up

A - B - D - E - C D - B - E - A - C D - E - B - C - A

A

B C

D E

Pre-order ? In-order ? Post-order ?

 Warm-Up Warm-Up

A - B - D - E - C D - B - E - A - C D - E - B - C - A

What kind of traversal is this?

A

B C

D E

Pre-order ? In-order ? Post-order ?

 Warm-Up Warm-Up

A - B - D - E - C D - B - E - A - C D - E - B - C - A

What kind of traversal is this?
depth-first

 Breadth-First v Depth-First Tree Traversal Breadth-First v Depth-First Tree Traversal

Your Move

Their Move

Your Move

Their Move

...

move queen move king

move pawn 3

move rook

 Breadth-First v Depth-First Tree Traversal Breadth-First v Depth-First Tree Traversal

Your Move

Their Move

Your Move

Their Move

...

move queen move king

move pawn 3

checkmate

move rook

 Breadth-First v Depth-First Tree Traversal

X Foundations of Computer Science 107

Slide 1001

Breadth-First v Depth-First Tree Traversal

binary trees as decision trees

Look for solution nodes

• Depth-first : search one subtree in full before moving on

• Breadth-first: search all nodes at level k before moving to k + 1

Finds all solutions — nearest first!

Preorder, inorder and postorder tree traversals all have something in common:
they are depth-first. At each node, the left subtree is entirely traversed before the
right subtree. Depth-first traversals are easy to code and can be efficient, but they
are ill-suited for some problems.

Suppose the tree represents the possible moves in a puzzle, and the purpose
of the traversal is to search for a node containing a solution. Then a depth-first
traversal may find one solution node deep in the left subtree, when another solution
is at the very top of the right subtree. Often we want the shortest path to a solution.

Suppose the tree is infinite, or simply extremely large. Depth-first search is
almost useless with such trees, for if the left subtree is infinite then the search will
never reach the right subtree. ML can represent infinite trees by the means discussed
in Lect. 9. Another tree representation (suitable for solving solitaire, for example)
is by a function next : pos -> pos list, which maps a board position to a list of
the positions possible after the next move. For simplicity, the examples below use
the ML datatype tree, which has only finite trees.

A breadth-first traversal explores the nodes horizontally rather than vertically.
When visiting a node, it does not traverse the subtrees until it has visited all other
nodes at the current depth. This is easily implemented by keeping a list of trees
to visit. Initially, this list consists of one element: the entire tree. Each iteration
removes a tree from the head of the list and adds its subtrees after the end of the list.

 Breadth-First v Depth-First Tree Traversal

type 'a tree = Lf  
 | Br of 'a * 'a tree * 'a tree

VI Foundations of Computer Science 69

Slide 609

Binary Trees, a Recursive Datatype

datatype 'a tree = Lf

| Br of 'a * 'a tree * 'a tree

1

2 3

4 5

Br(1, Br(2, Br(4, Lf, Lf),

Br(5, Lf, Lf)),

Br(3, Lf, Lf))

A data structure with multiple branching is called a tree. Trees can represent
mathematical expressions, logical formulae, computer programs, the phrase struc-
ture of English sentences, etc.

Binary trees are nearly as fundamental as lists. They can provide efficient stor-
age and retrieval of information. In a binary tree, each node is empty (L f), or is a
branch (Br) with a label and two subtrees.

ML lists are a datatype and could be declared as follows:

datatype 'a list = nil

| cons of 'a * 'a list

We could even declare :: as an infix constructor. The only thing we could not
define is the [. . .] notation, which is part of the ML grammar.

A recursive type does not have to be polymorphic. For example, here is a simple
datatype of tree shapes with no attached data:

datatype shape = Null

| Join of shape * shape

The datatype ’a option (mentioned above) is polymorphic, but not recursive.

 Warm-Up Reminder: type tree

 Breadth-First Tree Traversal — Using Append

X Foundations of Computer Science 108

Slide 1002

Breadth-First Tree Traversal — Using Append

fun nbreadth [] = []

| nbreadth (Lf :: ts) = nbreadth ts

| nbreadth (Br(v,t,u) :: ts) =

v :: nbreadth(ts @ [t,u])

Keeps an enormous queue of nodes of search

Wasteful use of append

25 SECS to search depth 12 binary tree (4095 labels)

Breadth-first search can be inefficient, this naive implementation especially so.
When the search is at depth d of the tree, the list contains all the remaining trees at
depth d, followed by the subtrees (all at depth d + 1) of the trees that have already
been visited. At depth 10, the list could already contain 1024 elements. It re-
quires a lot of space, and aggravates this with a gross misuse of append. Evaluating
ts@[t,u] copies the long list ts just to insert two elements.

 Breadth-First Tree Traversal — Using Append

queue

* careful: assumes depth starts at 1

let rec nbreadth = function
| [] -> []
| Lf :: ts -> nbreadth ts
| Br (v, t, u) :: ts ->
 v :: nbreadth (ts @ [t; u])

 Breadth-First Tree Traversal — Using Append Breadth-First Tree Traversal — Using Append

A

B C

D E

nbreadth([tA])
vA :: nbreadth([] @ [tB; tC])
vA :: nbreadth([tB; tC])
vA :: vB :: nbreadth([tC] @ [tD; E])
vA :: vB :: nbreadth([tC; tD; tE])
vA :: vB :: vC :: nbreadth([tD; tE] @ [Lf; Lf])
vA :: vB :: vC :: nbreadth([tD; tE; Lf; Lf])
…

(* ts is empty *)

(* put root value into list *)

(* execute append *)

(* append new subtrees *)

Notation in this example:

Br(vA , tB, tC) is a tree tA with root value vA
and subtrees tB, tC

first arg of append grows!

 Breadth-First Tree Traversal — Using Append Breadth-First Tree Traversal — Using Append

Two key operations in nbreadth example:

[tree_1; tree_2; ….; tree_N]

remove tree from head add new subtrees to tail

The order matters:

Process what we first put into list first,
before we process its descendants.

-> find a better data-structure than ordinary list

A

B C

D E

An Abstract Data Type: Queues

X Foundations of Computer Science 109

Slide 1003

An Abstract Data Type: Queues

• qempty is the empty queue

• qnull tests whether a queue is empty

• qhd returns the element at the head of a queue

• deq discards the element at the head of a queue

• enq adds an element at the end of a queue

Breadth-first search becomes much faster if we replace the lists by queues. A
queue represents a sequence, allowing elements to be taken from the head and
added to the tail. This is a First-In-First-Out (FIFO) discipline: the item next to
be removed is the one that has been in the queue for the longest time. Lists can
implement queues, but append is a poor means of adding elements to the tail.

Our functional arrays (Lect. 7) are suitable, provided we augment them with a
function to delete the first array element. (See ML for the Working Programmer,
page 156.) Each operation would take O(log n) time for a queue of length n.

We shall describe a representation of queues that is purely functional, based
upon lists, and efficient. Operations take O(1) time when amortized: averaged over
the lifetime of a queue.

A conventional programming technique is to represent a queue by an array. Two
indices point to the front and back of the queue, which may wrap around the end of
the array. The coding is somewhat tricky. Worse, the length of the queue must be
given a fixed upper bound.

An Abstract Data Type: Queues

We want: efficient FIFO data-structure

[tree_1; tree_2; ….; tree_N]

qhd

deq enq

Efficient Functional Queues: Idea

X Foundations of Computer Science 110

Slide 1004

Efficient Functional Queues: Idea

Represent the queue x1 x2 . . . xm yn . . . y1

by any pair of lists

([x1, x2, . . . , xm], [y1, y2, . . . , yn])

Add new items to rear list

Remove items from front list ; if empty move rear to front

Amortized time per operation is O(1)

Queues require efficient access at both ends: at the front, for removal, and at
the back, for insertion. Ideally, access should take constant time, O(1). It may
appear that lists cannot provide such access. If enq(q,x) performs q@[x], then this
operation will be O(n). We could represent queues by reversed lists, implementing
enq(q,x) by x::q, but then the deq and qhd operations would be O(n). Linear
time is intolerable: a series of n queue operations could then require O(n2) time.

The solution is to represent a queue by a pair of lists, where

([x1, x2, . . . , xm], [y1, y2, . . . , yn])

represents the queue x1x2 . . . xm yn . . . y1.
The front part of the queue is stored in order, and the rear part is stored in reverse

order. The enq operation adds elements to the rear part using cons, since this list
is reversed; thus, enq takes constant time. The deq and qhd operations look at the
front part, which normally takes constant time, since this list is stored in order. But
sometimes deq removes the last element from the front part; when this happens, it
reverses the rear part, which becomes the new front part.

Amortized time refers to the cost per operation averaged over the lifetime of
any complete execution. Even for the worst possible execution, the average cost
per operation turns out to be constant; see the analysis below.

Efficient Functional Queues: Idea

Goal: avoid q@[x] since O(length(q))

Key idea: reverse back half of list!

careful! (reversed)

a

Efficient Functional Queues: IdeaEfficient Functional Queues: Idea

[1; 2; 3; 4; 5; 6]

([1; 2; 3], [6; 5; 4])

1 :: [2; 3] 7 :: [6; 5; 4]

([2; 3], [7; 6; 5; 4])

7deq
enq

Functional queue:
pattern-match and discard cons 7

Goal:

Result:

Rationale of amortized cost, for a queue of length n:
• n enq, n deq operations

• 2n cons operations for queue of length n

• O(1) cost per operation

Efficient Functional Queues: CodeEfficient Functional Queues: Code

type 'a queue = Q of 'a list * 'a list

let norm = function
| Q ([], tls) -> Q (List.rev tls, [])
| q -> q

let qnull q = (q = Q ([], []))

let enq (Q (hds, tls)) x =
 norm (Q (hds, x::tls))

exception Empty

let deq = function
| Q (x::hds, tls) -> norm (Q (hds, tls))
| _ -> raise Empty

Breadth-First Tree Traversal — Using Queues

X Foundations of Computer Science 113

Slide 1007

Breadth-First Tree Traversal — Using Queues

fun breadth q =

if qnull q then []

else

case qhd q of

Lf => breadth (deq q)

| Br(v,t,u) =>

v :: breadth(enq(enq(deq q, t), u))

0.14 secs to search depth 12 binary tree (4095 labels)

200 times faster!

This function implements the same algorithm as nbreadth but uses a different
data structure. It represents queues using type queue instead of type list.

To compare their efficiency, I applied both functions to the full binary tree of
depth 12, which contains 4095 labels. The function nbreadth took 30 seconds
while breadth took only 0.15 seconds: faster by a factor of 200.

For larger trees, the speedup would be greater. Choosing the right data structure
pays handsomely.

Breadth-First Tree Traversal — Using Queues

removing first subtree

enq. its children

* careful: assumes depth starts at 1

let rec breadth q =
 if qnull q then []
 else
 match qhd q with
 | Lf -> breadth (deq q)
 | Br (v, t, u) ->
 v :: breadth (enq (enq (deq q) t) u)

Iterative Deepening: Another Exhaustive Search

X Foundations of Computer Science 114

Slide 1008

Iterative deepening: Another Exhaustive Search

Breadth-first search examines O(bd) nodes:

1 + b + · · · + bd =
bd+1 − 1

b − 1

b = branching factor

d = depth

Recompute nodes at depth d instead of storing them

Time factor is b/(b − 1) if b > 1; complexity is still O(bd)

Space required at depth d drops from bd to d

Breadth-first search is not practical for infinite trees: it uses too much space.
Large parts of the tree have to be stored. Consider the slightly more general problem
of searching trees whose branching factor is b (for binary trees, b = 2). Then
breadth-first search to depth d examines (bd+1 −1)/(b −1) nodes, which is O(bd),
ignoring the constant factor of b/(b −1). Since all nodes that are examined are also
stored, the space and time requirements are both O(bd).

Depth-first iterative deepening combines the space efficiency of depth-first with
the ‘nearest-first’ property of breadth-first search. It performs repeated depth-first
searches with increasing depth bounds, each time discarding the result of the pre-
vious search. Thus it searches to depth 1, then to depth 2, and so on until it finds
a solution. We can afford to discard previous results because the number of nodes
is growing exponentially. There are bd+1 nodes at level d + 1; if b ≥ 2, this num-
ber actually exceeds the total number of nodes of all previous levels put together,
namely (bd+1 − 1)/(b − 1).

Korf [7] shows that the time needed for iterative deepening to reach depth d is
only b/(b −1) times that for breadth-first search, if b > 1. This is a constant factor;
both algorithms have the same time complexity, O(bd). In typical applications
where b ≥ 2 the extra factor of b/(b − 1) is quite tolerable. The reduction in the
space requirement is exponential, from O(bd) for breadth-first to O(d) for iterative
deepening. Of course, this assumes that the tree itself is not stored in memory.

Iterative Deepening: Another Exhaustive Search

General formula:

For binary tree: 2d+1 - 1

Space and time complexity: O(bd)

* careful: assumes depth starts at 0

Idea behind iterative deepening:

• Use DFS to get benefits of BFS

• Recompute nodes at depth d instead of storing them

• Complexity: b/(b − 1) times that for BFS (if b>1)

• Space requirement at depth d drops from bd to d

Iterative Deepening: Another Exhaustive SearchIterative Deepening: Another Exhaustive Search

A

B C

D E

Recall depth-first search:

D

F G Space complexity: O(d)

Another Abstract Data Type: Stacks

X Foundations of Computer Science 115

Slide 1009

Another Abstract Data Type: Stacks

• empty is the empty stack

• null tests whether a stack is empty

• top returns the element at the top of a stack

• pop discards the element at the top of a stack

• push adds an element at the top of a stack

A stack is a sequence such that items can be added or removed from the head
only. A stack obeys a Last-In-First-Out (LIFO) discipline: the item next to be
removed is the one that has been in the queue for the shortest time. Lists can easily
implement stacks because both cons and hd affect the head. But unlike lists, stacks
are often regarded as an imperative data structure: the effect of push or pop is to
change an existing stack, not return a new one.

In conventional programming languages, a stack is often implemented by stor-
ing the elements in an array, using a variable (the stack pointer) to count them. Most
language processors keep track of recursive function calls using an internal stack.

Another Abstract Data Type: Stacks

A Survey of Search Methods

X Foundations of Computer Science 116

Slide 1010

A Survey of Search Methods

1. Depth-first: use a stack (efficient but incomplete)

2. Breadth-first: use a queue (uses too much space!)

3. Iterative deepening: use (1) to get benefits of (2)

(trades time for space)

4. Best-first: use a priority queue (heuristic search)

The data structure determines the search!

Search procedures can be classified by the data structure used to store pending
subtrees. Depth-first search stores them on a stack, which is implicit in functions
like inorder, but can be made explicit. Breadth-first search stores such nodes in a
queue.

An important variation is to store the nodes in a priority queue, which is an
ordered sequence. The priority queue applies some sort of ranking function to the
nodes, placing higher-ranked nodes before lower-ranked ones. The ranking function
typically estimates the distance from the node to a solution. If the estimate is good,
the solution is located swiftly. This method is called best-first search.

The priority queue can be kept as a sorted list, although this is slow. Binary
search trees would be much better on average, and fancier data structures improve
matters further.

A Survey of Search Methods

CODE DEMO
of Fast vs Slow Breadth-First Search

time how long it takes to traverse

a tree of depth 16 (131’071 nodes)

* careful: assumes depth starts at 0

