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‘Review: Curried FunctionsI

> let prefix a b = a © b;;
val prefix : string -> string -> string = <fun>

prefix a b =5 (prefix a) b
string -> string -> string - string -> (string -> string)

Expressions are evaluated from Left to right (left -assoc.)

The -» symbol associates to the right

Example:

e partial application: fix first arg,

> let promote = prefix "Professor ";

4

let promote : string -> string = <fun>

> prefix "Mrs. "Johnson"; ;
- : string = "Mrs. Johnson"

> promote "Johnson';;
- : string = "Professor Johnson’
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A-B-D-E-C D-B-E-A-C D-E-B-C-A

What kind of traversal is this?
depth-first
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‘ Breadth-First v Depth-First Tree TraversaII

Your Move
move gueen move King
move pawn 3 Their Move
checkmate
Your Move
move rook

Their Move



‘ Breadth-First v Depth-First Tree TraversaII

binary trees as decision trees

Look for solution nodes
e Depth-first: search one subtree in full before moving on

e Breadth-first: search all nodes at level k before moving to k + 1

Finds all solutions — nearest first!



‘ Reminder: type tree I

type 'a tree = Lf
| Br of 'a * 'a tree * 'a tree

Br (5, Lf, Lf)),



‘ Breadth-First Tree Traversal — Using AppendI

let rec nbreadth = function
[] == []
Lf :: ts -> nbreadth ts
Br (v, t, u) :: ts ->
v :: nbreadth (ts @ [t; u])

me,queua

Keeps an enormous queue of nodes of search
Wasteful use of append

25 SECS to search depth 12 binary tree (4095 labels)

* careful: assumes depth starts at 1



‘ Breadth-First Tree Traversal — Using AppendI

Q Notation in this example:
(B (c) Br(va, t, tc) Iis a tree t4 with root value v
and subtrees i3, tc

nbreadth([tA]) (* ts is empty ¥)
nbreadth([ ] @ [ts; tc/) (* put root value into list *)

V4 nbreadth([ tB,; tc/) (* execute append *)

v4 .2 ve . nbreadth([tc] @ [tp; E]) (* append new subtrees *)

VA4 I VB ! nbreadth([ tc, tp; tef)
Va4 .2 VB I ve . nbreadth([ t; tE] @ [Lf; Lf])
va i v -2 ve i nbreadth([tp; te; Lf: Lf])

first arg of append grows!



‘ Breadth-First Tree Traversal — Using Append'

Two key operations in nbreadth example:

f” [tree_1; tree_R; ....; kree_N] 4

remove tree from head

add new subbrees bto kail

The order matters:
Process what we first put into list first,
before we process its descendants.

-> find a bebter data-structure than ordinary List



‘An Abstract Data Type: Queues'

We wank: efficient FIFQ daka-structure

e gempty is the empty queue

e gnull tests whether a queue is empty

e Oghd returns the element at the head of a queue
® deq discards the element at the head of a queue
e cng adds an element at the end of a queue

ghd

‘

d@.q [tree_1; tree_2; ....; bree_N] 4 ~ eng

T~




‘Efficient Functional Queues: IdeaI

Goal: avoid g@[x] since O(length(g))

Key idea: reverse back half of List!

Represent the queue x1 x2 ... X, Vn ..

.YI

by a pair of lists

([x1, %2, - ooy Xm], 1, Y2, -5 Yul)

Add new items to rear list

Remove items from front list; if empty move rear to front
careful! (reversed
Amortized time per operation is O (1) ¥ )



‘Efficient Functional Queues: IdeaI

| e
Goal: d@.(\[l; 2: 3; 4; 5; 6] 4 ‘5}_"7
Functional queue: ([1; 27 31, [67 5; 4])
pa&&armMma%@h and disa&rc&l ‘L&oms 7

1l 22 [2; 3] 7 22 [6; 5; 4]
Result: ([2; 31, [7; 6; 5; 41])

Rationale of amortized cost, for a queue of length n:
* N eng, h deq operations
e 2n cons operations for queue of length n
e O(1) cost per operation



‘Efficient Functional Queues: CodeI

type 'a queue = Q of 'a list * 'a list

let norm = function
| @ ([], tls) -> Q (List.rev tls, [])

| @ -> g
let qnull g = (g =0 ([1, [1))

let enqg (Q (hds, tls)) x =
norm (Q (hds, x::tls))

exception Empty
let deg = function

| Q@ (x::hds, tls) -> norm (Q (hds, tls))
|  -> raise Empty



‘Breadth-First Tree Traversal — Using Queues'

let rec breadth g =
1f gnull g then []
else removing first subbree
match ghd g with |
| Lf -> breadth (deq q)
| Br (v, t, u) -> ‘ . |
v :: breadth (enq (enq (deq g) t) u)

enq. tks children

0.14 secs to search depth 12 binary tree (4095 labels)

200 times faster!

* careful: assumes depth starts at 1



‘Iterative Deepening: Another Exhaustive Search'

Breadth-first search examines O (b%) nodes:

General formula:
pitl — 1 b = branching factor

l+b+- +b" =
b—1 d = depth

~or bmarj free: 24+1 - 1

Space and time complexity: O(b9)

* careful: assumes depth starts at ©



‘Iterative Deepening: Another Exhaustive Search'

Idea behind iterative deepening:

e Use DFS to get benefits of BFS

e Recompute nodes at depth d instead of storing them
e Complexity: b/(b — 1) times that for BFS (if b>1)

e Space requirement at depth d drops from bd to d

Recall depth-first search:

Space complexity: O(d)



‘Another Abstract Data Type: StacksI

empty is the empty stack

null tests whether a stack is empty

t op returns the element at the fop of a stack
pop discards the element at the fop of a stack

push adds an element at the top of a stack



‘A Survey of Search MethodsI

1. Depth-first. use a stack (efficient but incomplete)
2. Breadth-first: use a queue (uses too much space!)

3. Iterative deepening: use (1) to get benefits of (2)

(trades time for space)

4. Best-first: use a priority queue (heuristic search)

The data structure determines the search!



CODE DEMO
of Fast vs Slow Breadth-First Search

time how long it takes to traverse
a tree of depth 16 (131°071 nodes)

* careful: assumes depth starts at ©



