Review: Curried Functions

> let prefix a b = a ^ b;;
val prefix : string -> string -> string = <fun>

prefix a b ℸ (prefix a) b
string -> string -> string ℸ string -> (string -> string)

Expressions are evaluated from left to right (left -assoc.)
The -> symbol associates to the right

Example:

> let promote = prefix "Professor ";
let promote : string -> string string = <fun>

> prefix "Mrs. " "Johnson";;
- : string = "Mrs. Johnson"

> promote "Johnson";;
- : string = "Professor Johnson"
Warm-Up

Pre-order ? In-order ? Post-order ?
Pre-order? In-order? Post-order?

A - B - D - E - C
Warm-Up

Pre-order?

A - B - D - E - C

In-order?

D - B - E - A - C

Post-order?

Pre-order? In-order? Post-order?

A - B - D - E - C D - B - E - A - C D - E - B - C - A
What kind of traversal is this?
What kind of traversal is this? **depth-first**
Breadth-First v Depth-First Tree Traversal

move queen

move king

move pawn 3

move rook

Your Move

Their Move

Your Move

Their Move
Breadth-First v Depth-First Tree Traversal

Your Move

move queen

move king

Their Move

move pawn 3

... checkmate

Your Move

move rook

Their Move
Breadth-First v Depth-First Tree Traversal

binary trees as *decision trees*

Look for *solution nodes*

- *Depth-first*: search one subtree in full before moving on
- *Breadth-first*: search all nodes at level k before moving to $k + 1$

Finds *all* solutions — nearest first!
type 'a tree = Lf
| Br of 'a * 'a tree * 'a tree

Br(1, Br(2, Br(4, Lf, Lf), Br(5, Lf, Lf)), Br(3, Lf, Lf))
Breadth-First Tree Traversal — Using Append

```ocaml
let rec nbreadth = function
| [] -> []
| Lf :: ts -> nbreadth ts
| Br (v, t, u) :: ts ->
    v :: nbreadth (ts @ [t; u])
```

Keeps an enormous queue of nodes of search

Wasteful use of append

25 SECS to search depth 12 binary tree (4095 labels)

* careful: assumes depth starts at 1
Breadth-First Tree Traversal — Using Append

Notation in this example:

\[Br(v_A, t_B, t_C) \] is a tree \(t_A \) with root value \(v_A \) and subtrees \(t_B, t_C \)

\[
\begin{align*}
\text{nbreadth}([t_A]) & \\
v_A :: \text{nbreadth}([\] @ [t_B; t_C]) & \\
v_A :: \text{nbreadth}([t_B; t_C]) & \\
v_A :: v_B :: \text{nbreadth}([t_C] @ [t_D; t_E]) & \\
v_A :: v_B :: v_C :: \text{nbreadth}([t_C; t_D; t_E]) & \\
v_A :: v_B :: v_C :: \text{nbreadth}([t_D; t_E] @ [L_f; L_f]) & \\
v_A :: v_B :: v_C :: \text{nbreadth}([t_D; t_E; L_f; L_f]) & \\
\vdots & \\
\end{align*}
\]

(* ts is empty *)

(* put root value into list *)

(* execute append *)

(* append new subtrees *)

first arg of append grows!
Breadth-First Tree Traversal — Using Append

Two key operations in an example:

- Remove tree from head
- Add new subtrees to tail

The order matters:
Process what we first put into list first, before we process its descendants.

→ find a better data-structure than ordinary list
An Abstract Data Type: Queues

We want: efficient FIFO data-structure

- `qempty` is the *empty queue*
- `qnull` tests whether a queue is empty
- `qhd` *returns* the element at the *head* of a queue
- `deq` *discards* the element at the *head* of a queue
- `enq` *adds* an element at the *end* of a queue
Represent the queue \(x_1 \ x_2 \ldots \ x_m \ y_n \ldots \ y_1 \)
by a pair of lists
\[
([x_1, x_2, \ldots, x_m], \ [y_1, y_2, \ldots, y_n])
\]

Add new items to \textit{rear list}

Remove items from \textit{front list}; if empty move \textit{rear} to \textit{front}

Amortized time per operation is \(O(1) \)
Efficient Functional Queues: Idea

Goal:
\[
\text{deq} \quad [1; 2; 3; 4; 5; 6] \quad \text{enq} \quad 7
\]

Functional queue:
\[
([1; 2; 3], [6; 5; 4])
\]

pattern-match and discard
\[
1 :: [2; 3] \\
7 :: [6; 5; 4]
\]

Result:
\[
([2; 3], [7; 6; 5; 4])
\]

Rationale of amortized cost, for a queue of length \(n \):
- \(n \) \text{enq}, \(n \) \text{deq} operations
- \(2n \) cons operations for queue of length \(n \)
- O(1) cost per operation
type 'a queue = Q of 'a list * 'a list

let norm = function
| Q ([], tls) -> Q (List.rev tls, [])
| q -> q

let qnull q = (q = Q ([], []))

let enq (Q (hds, tls)) x =
 norm (Q (hds, x::tls))

exception Empty

let deq = function
| Q (x::hds, tls) -> norm (Q (hds, tls))
| _ -> raise Empty
Breadth-First Tree Traversal — Using Queues

let rec breadth q =
 if qnull q then []
 else
 match qhd q with
 | Lf -> breadth (deq q)
 | Br (v, t, u) ->
 v :: breadth (enq (enq (deq q) t) u)

0.14 secs to search depth 12 binary tree (4095 labels)

200 times faster!

* careful: assumes depth starts at 1
Breadth-first search examines $O(b^d)$ nodes:

General formula:

$$1 + b + \cdots + b^d = \frac{b^{d+1} - 1}{b - 1}$$

$b = \text{branching factor}$

$d = \text{depth}$

For binary tree: $2^{d+1} - 1$

Space and time complexity: $O(b^d)$

careful: assumes depth starts at 0
Idea behind iterative deepening:
• Use **DFS** to get benefits of BFS
• Recompute nodes at depth \(d \) instead of storing them
• Complexity: \(\frac{b}{b - 1} \) times that for BFS (if \(b > 1 \))
• Space requirement at depth \(d \) drops from \(b^d \) to \(d \)

Recall depth-first search:

Space complexity: \(O(d) \)
Another Abstract Data Type: Stacks

- **empty** is the *empty stack*
- **null** *tests* whether a stack is empty
- **top** *returns* the element at the *top* of a stack
- **pop** *discards* the element at the *top* of a stack
- **push** *adds* an element at the *top* of a stack
A Survey of Search Methods

1. Depth-first: use a stack (efficient but incomplete)
2. Breadth-first: use a queue (uses too much space!)
3. Iterative deepening: use (1) to get benefits of (2) (trades time for space)
4. Best-first: use a priority queue (heuristic search)

The data structure determines the search!
CODE DEMO
of Fast vs Slow Breadth-First Search

time how long it takes to traverse
a tree of depth 16 (131’071 nodes)

* careful: assumes depth starts at 0