Formal Models of Language

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

You shall know a word by the **company** it keeps—Firth

Consider the following sentences about the rabbit in Alice in Wonderland:

- Suddenly a white rabbit with pink eyes ran close by her.
- She was walking by the white rabbit who was peeping anxiously into her face.
- The rabbit actually took a watch out of its waistcoat pocket and looked at it.
- 'Oh hush', the rabbit whispered, in a frightened tone.
- The white rabbit read out at the top of his shrill little voice the name Alice.

We learn a lot about the rabbit from the words in the local context.

You shall know a word by the **company** it keeps—Firth

- So far, we have been discussing grammars with discrete alphabets and algorithms that have discrete symbols as input.
- Many Natural Language Processing tasks require some notion of similarity between the symbols.
 - e.g. The queen looked angry. Her majesty enjoyed beheading.
 - To understand the implication of these sentences we need to know that *the queen* and *her majesty* are similar ways of expressing the same thing.
- Instead of symbols we can represent a word by a collection of key words from its context (as a proxy to its meaning)
 - e.g instead of rabbit we could use

```
rabbit = {white, pink, eyes, voice, read, watch, waistcoat, ...}
```

You shall know a word by the company it keeps—Firth

- But which key words do we include in the collection?
- We could look at a $\pm n$ -word context **window** around the **target** word.
- We could select (and weight) keywords based on their frequency in the window:

```
rabbit = {the 56, white 22, a 17, was 11, in 10, it 9, said 8, and 8, to 7...}
```

 This would become a little more informative if we removed the function words:

```
rabbit ={white 22, said 8, alice 7, king 4, hole 4, hush 3, say 3, anxiously 2...} queen ={said 21, king 6, shouted 5, croquet 4, alice 4, play 4, hearts 4, head 3...} cat ={said 19, alice 5, cheshire 5, sitting 3, think 3, queen 2, vanished 2, grin 2...}
```

• This is all just illustrative, we can of course, do this for all words (not just the characters)—called distributional semantics.

We can replace symbols with vector representations

- Two words can be expected to be semantically similar if they have similar word co-occurrence behaviour in texts.
 - e.g. in large amounts of general text we would expect *queen* and *monarch* to have similar word co-occurrences.
- Simple collections of context words don't help us easily calculate any notion of similarity.
- A trend in modern Natural Language Processing technology is to replace symbolic representation with a vector representation
- Every word is encoded into some vector that represents a point in a multi-dimensional word space.

	alice	croquet	grin	hurried	king	say	shouted	vanished
rabbit	7	0	0	2	4	3	0	1
queen	4	4	0	1	6	1	5	0
cat	5	1	2	0	0	0	0	2

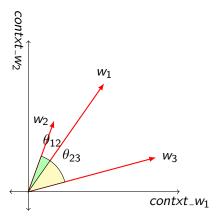
We can replace symbols with vector representations

- Note that there is an issue with polysemy (words that have more than one meaning):
- E.g. we have obtained the following vector for cat:

$$cat = [5, 1, 2, 0, 0, 0, 0, 2]$$

- But cat referred to two entities in our story:
 - I wish I could show you our cat Dinah
 - I didn't know that Cheshire cats always grinned in fact I didn't know that cats could grin

- The vector provides the coordinates of point/vector in the multi-dimensional word space.
- Assumption: proximity in word space correlates with similarity in meaning
- Similarity can now be measured using distance measures such as Jaccard, Cosine, Euclidean...



- e.g. cosine similarity $cosine(\mathbf{v_1}, \mathbf{v_2}) = \frac{\mathbf{v_1} \cdot \mathbf{v_2}}{\|\mathbf{v_1}\| \|\mathbf{v_2}\|}$
- Equivalent to dot product of normalised vectors (not affected by magnitude)
- cosine is 0 between orthogonal vectors
- cosine is 1 if $v_1 = \alpha v_2$, where $\alpha > 0$

Automatically derived vectors will be very large and sparse

- In certain circumstances we might select dimensions expertly
- For general purpose vectors we want to simply count in a large collection of texts, the number of times each word appears inside a window of a particular size around the target word.
- This leads to very large sparse vectors (remember Zipf's law)
- There are an estimated 13 million tokens for the English language—we
 can reduce this a bit by removing (or discounting) function words,
 grouping morphological variants (e.g, grin, grins, grinning)
- Is there some k-dimensional space (such that k << 13 million) that is sufficient to encode the word meanings of natural language?
- Dimensions might hypothetically encode tense (past vs. present vs. future), count (singular vs. plural), and gender (masculine vs. feminine)...

It is possible to reduce the dimensions of the vector

To find reduced dimensionality vectors (usually called word embeddings)

- Loop over a massive dataset and accumulate word co-occurrence counts in some form of a large sparse matrix X (dimensions $n \times n$ where n is vocabulary size)
- Perform Singular Value Decomposition on X to get a USV^T decomposition of X.

$$\begin{bmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \chi & \vdots \\ x_{n1} & \dots & x_{nn} \end{bmatrix} = \begin{bmatrix} u_{11} & \vdots & \vdots & \vdots \\ \vdots & u_{2} & \dots & u_{n} \\ u_{1n} & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} s_{1} & 0 & 0 & \dots \\ 0 & s_{2} & 0 & \dots \\ 0 & 0 & \ddots & \dots \\ \vdots & \vdots & \vdots & s_{n} \end{bmatrix} \begin{bmatrix} v_{11} & \dots & v_{1n} \\ \dots & v_{2} & \dots \\ \vdots & \vdots & \vdots & s_{n} \end{bmatrix}$$

It is possible to **reduce** the **dimensions** of the vector

- Note S matrix has diagonal entries only.
- Cut diagonal matrix at index k based on desired dimensionality (can be decided by desired percentage variance): $(\sum_{i=1}^{k} s_i)/(\sum_{i=1}^{n} s_i)$

$$\begin{bmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \chi' & \vdots \\ x_{n1} & \dots & x_{nn} \end{bmatrix} = \begin{bmatrix} u_{11} & \vdots & \vdots \\ \vdots & \dots & u_k \\ u_{1n} & \vdots & \vdots \end{bmatrix} \begin{bmatrix} s_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & s_k \end{bmatrix} \begin{bmatrix} v_{11} & \dots & v_{1n} \\ \dots & \vdots & \dots \\ \dots & v_k & \dots \end{bmatrix}$$

- Use rows of *U* for the word embeddings.
- This gives us a *k*-dimensional representation of every word in the vocabulary.

It is possible to reduce the dimensions of the vector

Things to note:

- Need all the counts before we do the SVD reduction.
- The matrix is extremely sparse (most words do not co-occur)
- The matrix is very large ($\approx 10^6 \times 10^6$)
- SVD is quadratic

Points of methodological variation:

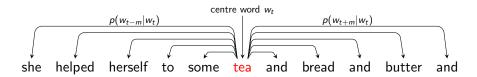
- Due to Zipf distribution of words there is large variance in co-occurrence frequencies (need to do something about this e.g. discount/remove stop words)
- Refined approaches might weight the co-occurrence counts based on distance between the words

Predict models can be more efficient than count models

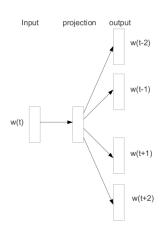
- word2vec is a predict model, in contrast to the distributional models already mentioned which are count models.
- Instead of computing and storing a large matrix from a very large dataset, use a model that learns iteratively, eventually encoding the probability of a word given its context.
- The parameters of the model are the word embeddings.
- The model is trained on a certain objective.
- At every iteration we run our model, evaluate the errors, and then adjust the model parameters that caused the error.

Predict models can be more efficient than count models

- Two simple word2vec architectures:
- Continuous Bag of Words CBOW: given some context word embeddings, predict the target word embedding.
- **Skip-gram**: given a target word embedding, predict the context word embeddings (below).



- **skip-gram** model predicts relationship between a centre word w_t and its context words: $p(context|w_t) = ...$
- Predict context word embeddings based on the target word embedding.
- A loss function is used to score the prediction (usually cross-entropy loss function).
 - (Cross-entropy measures the information difference between the expected word embeddings and the predicted ones.)
- Adjust the word embeddings to minimise the loss function.
- Repeat over many positions of t in a very big language corpus.



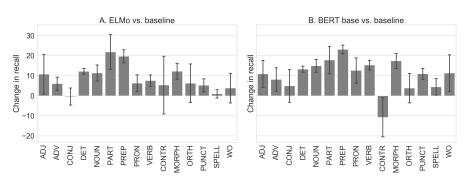
Distributional models have improved NLP applications

In general, distributional models have had a positive impact on NLP and provided improvement over symbolic systems:

- There has been a change in state-of-the-art for some applications: (e.g. Google Translate)
- Multi-modal experiments have become more straightforward (by combining vector representations)
- But these models are statistical (need very large amounts of data and have to find a way to handle unseen words)
- There has been a lot of hype and not much work on the problems the distributional models can't solve.

Methods for predict word models are fast moving research

- There are many different methods for training word embeddings.
- A method can be considered better than a previous method if it gives us an improvement for a task.
- e.g. using contextual embeddings for grammatical error detection



- Part III project by Sam Bell 2019

Predict models versus count models

- + Predict models can be more efficient than count models because we can learn **iteratively** and don't have to hold statistics on the whole dataset.
- Need to initialise the word embeddings (several possible methods).
- \pm The size of the embeddings is a chosen parameter of the system (usually a few hundred).
- + Predict models are learning structure **without hand-crafting** of features.
- Dimensionality of the embeddings are assumed to capture meaningful generalisations, but the dimensions are **not directly interpretable**.

Predict models versus count models

- After training, predict models are found to be equivalent to a count model with dimensionality reduction.
- Tuning hyper-parameters is a matter of much (often brute-force) experimentation.
- Predict models perform better than count models with dimensionality reduction on some tasks (but perhaps due to tuning hyper-parameters).
- For some tasks count vectors without dimensionality reduction are the most effective.

Word embeddings can correlate with human intuitions

Researchers test their word embeddings against datasets of **human** similarity judgements:

- For a test set of words, participants rate word pairs for relatedness (e.g. Miller & Charles, Rubenstein & Goodenough)
- A rank of relatedness can be drawn up between items in the test set.
- A rank correlation between embeddings and human judgements can be calculated.
- Good embeddings have a correlation of 0.8 or better with the human judgements.

Reasoning may be possible based on word embeddings

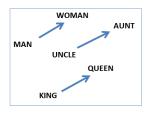
Mikolov et al. analogy puzzles:
 Can we use word embeddings to solve puzzles such as:

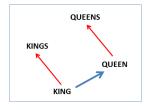
man is to woman as king is to queen

 Can we do vector-oriented reasoning based on the offsets between words?

Reasoning may be possible based on word embeddings

- Derive the vector between the pair of words man and woman and then add it to king.
- The nearest word to the region of vector space that results will be the answer to the analogy.

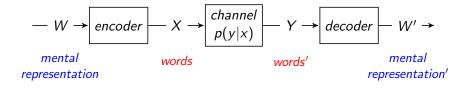




- Mikolov found that word2vec embeddings are good at capturing syntactic and semantic regularities in language, and that each relationship is characterised by a relation-specific vector offset.
- Note that the space is very sparse and that there are word pairs for which this does not work...

Relationship between embeddings and brain activity?

- Humans have the capacity to translate thoughts into words, and to infer others' thoughts from their words.
- There must be some mental representations of meaning that are mapped to language, but we have no direct access to these representations.



• Do word embeddings provide a model that successfully captures some aspects of our mental representation of meaning?

Relationship between embeddings and brain activity?

- Natural language appears to be a discrete symbolic system.
- The brain encodes information through continuous signals of activation.
- Language symbols are transmitted via continuous signals of sound/vision.
- Pereira et al. trained a system using brain imaging data and word embeddings.
- Demonstrated the ability to generalise to new meanings from limited imaging data.

https://www.nature.com/articles/s41467-018-03068-4

Relationship between embeddings and **brain activity**?

