
Formal Models of Language

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) Formal Models of Language 1 / 26

Recap:

We said LR shift-reduce parser wasn’t a good fit for natural language
because it proceeds deterministically and natural language is too
ambiguous.

We used the Earley parser to explore the whole tree-space, recording
partial derivations in a chart.

However,

We can use a modified version of the shift-reduce parser in order to
parse natural language.

First we’re going to learn about dependency grammars.

Paula Buttery (Computer Lab) Formal Models of Language 2 / 26

Dependency grammars

A dependency tree is a directed graph

A dependency tree is a directed graph representation of a string—each
edge represents a grammatical relationship between the symbols.

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

⇒

plays

alice croquet with

flamingos

pink

Paula Buttery (Computer Lab) Formal Models of Language 3 / 26

Dependency grammars

A dependency grammar derives dependency trees

Formally Gdep = (Σ,D, s,⊥,P) where:

Σ is the finite set of alphabet symbols

D is the set of symbols to indicate whether the dependent symbol
(the one on the RHS of the rule) will be located on the left or right of
the current item within the string D = {L,R}
s is the root symbol for the dependency tree (we will use s ∈ Σ but
sometimes a special extra symbol is used)

⊥ is a symbol to indicate a halt in the generation process

P is a set of rules for generating dependencies:
P = {(α→ β, d) | α ∈ (Σ ∪ s), β ∈ (Σ ∪ ⊥), d ∈ D}

In dependency grammars we refer to the term on the LHS of a rule as the
head and the RHS as the dependent (as opposed to parents and children
in phrase structure grammars).

Paula Buttery (Computer Lab) Formal Models of Language 4 / 26

Dependency grammars

Dependency trees have several representations

Two diagrammatic representations of a dependency tree for the string
bacdfe generated using Gdep = (Σ,D, s,⊥,P) where:

Σ = {a...f }
D = {L,R}
s = a
P = {(a→ b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)
(b →⊥,L | ⊥,R)
(c →⊥,L | ⊥,R)
(f →⊥,L | ⊥,R)}

a

b c d

e

f

b a c d f e

The same rules would have been used to generate the string badfec.
Useful when there is flexibility in the symbol order of grammatical strings.

Paula Buttery (Computer Lab) Formal Models of Language 5 / 26

Dependency grammars

Valid trees may be projective or non-projective

Valid derivation is one that is rooted in s and is weakly connected.

Derivation trees may be projective or non-projective.

Non-projective trees can be needed for long distance dependencies.

a toast to the queen was raised tonight

a toast was raised to the queen tonight

The difference has implications for parsing complexity.

Paula Buttery (Computer Lab) Formal Models of Language 6 / 26

Dependency grammars

Labels can be added to the dependency edges

A label can be added to each generated dependency:

P = {(α→ β : r , d) | α ∈ (Σ ∪ s), β ∈ (Σ ∪ ⊥), d ∈ D, r ∈ B}
where B is the set of dependency labels.

When used for natural language parsing, dependency grammars will often
label each dependency with the grammatical function (or the
grammatical relation) between the words.

alice plays croquet with pink flamingos

nsubj dobj

iobj dobj

nmod

root

Paula Buttery (Computer Lab) Formal Models of Language 7 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

Projective dependency grammars can be shown to be weakly equivalent
to context-free grammars.

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

Paula Buttery (Computer Lab) Formal Models of Language 8 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

S{plays}

NP{alice}

N{alice}

alice

VP{plays}

VP{plays}

V{plays}

plays

NP{croquet}

N{croquet}

croquet

PP{with}

P{with}

with

NP{flamingos}

N{flamingos}

A{pink}

pink

N{flamingos}

flamingos

Paula Buttery (Computer Lab) Formal Models of Language 9 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

S{plays}

NP{alice}

N{alice}

alice

VP{plays}

VP{plays}

V{plays}

plays

NP{croquet}

N{croquet}

croquet

PP{with}

P{with}

with

NP{flamingos}

N{flamingos}

A{pink}

pink

N{flamingos}

flamingos

Paula Buttery (Computer Lab) Formal Models of Language 10 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

S{plays}

NP{alice} VP{plays}

VP{plays}

NP{croquet}

PP{with}

NP{flamingos}

N{flamingos}

A{pink}

Paula Buttery (Computer Lab) Formal Models of Language 11 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

S{plays}

NP{alice} VP{plays}

VP{plays}

NP{croquet}

PP{with}

NP{flamingos}

N{flamingos}

A{pink}

Paula Buttery (Computer Lab) Formal Models of Language 12 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

S{plays}

NP{alice} .

.

NP{croquet}

PP{with}

NP{flamingos}

.

A{pink}

Paula Buttery (Computer Lab) Formal Models of Language 13 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

plays

alice .

.

croquet

with

flamingos

.

pink

Paula Buttery (Computer Lab) Formal Models of Language 14 / 26

Dependency grammars

Dependency grammars can be weakly equivalent to CFGs

plays

alice croquet with

flamingos

pink

plays

alice .

.

croquet

with

flamingos

.

pink

Projective dependency grammars can be shown to be weakly equivalent
to context-free grammars.

Paula Buttery (Computer Lab) Formal Models of Language 15 / 26

Dependency parsing

Dependency parsers use a modified shift-reduce parser

A common method for dependency parsing of natural language
involves a modification of the LR shift-reduce parser

The shift operator continues to move items of the input string from
the buffer to the stack

The reduce operator is replaced with the operations left-arc and
right-arc which reduce the top two stack symbols leaving the head
on the stack

Consider L(Gdep) ⊆ Σ∗, during parsing the stack may hold γab where
γ ∈ Σ∗ and a, b ∈ Σ, and b is at the top of the stack:

left-arc reduces the stack to γb and records use of rule b → a

right-arc reduces the stack to γa and records the use of rule a→ b

Paula Buttery (Computer Lab) Formal Models of Language 16 / 26

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = a
P = {(a→ b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a→ b
a cdfe shift
ac dfe right-arc a→ c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a→ d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) Formal Models of Language 17 / 26

Dependency parsing

Data driven dependency parsing is grammarless

For natural language there would be considerable effort in manually
defining P—this would involve determining the dependencies between
all possible words in the language.

Creating a deterministic grammar would be impossible (natural
language is inherently ambiguous).

Natural language dependency parsing can be achieved
deterministically by selecting parsing actions using a machine
learning classifier.

The features for the classifier include the items on the stack and in
the buffer as well as properties of those items (including
word-embeddings for the items).

Training is performed on dependency banks (that is, sentences that
have been manually annotated with their correct dependencies).

It is said that the parsing is grammarless—since no grammar is
designed ahead of training.

Paula Buttery (Computer Lab) Formal Models of Language 18 / 26

Dependency parsing

We can use a beam search to record the parse forest

The classifier can return a probability of an action.

To avoid the problem of early incorrect resolution of an ambiguous
parse, multiple competing parses can be recorded and a beam search
used to keep track of the best alternative parses.

Google’s Parsey McParseface is an English language dependency
parser that uses word-embeddings as features and a neural network to
score parse actions. A beam search is used to compare competing
parses.

Paula Buttery (Computer Lab) Formal Models of Language 19 / 26

Dependency parsing

Dependency parsers can be useful for parsing speech

The most obvious difference between spoken and written language is the
mode of transmission:

Prosody refers to the patterns of stress and intonation in a language.

Stress refers to the relative emphasis or prominence given to a
certain part of a word (e.g. CON-tent (the stuff included in
something) vs. con-TENT (happy))

Intonation refers to the way speakers’ pitch rises and falls in line
with words and phrases, to signal a question, for example.

Co-speech gestures involve parts of the body which move in
coordination with what a speaker is saying, to emphasise,
disambiguate or otherwise.

We can use some of these extra features to help the parse-action-classifier
when parsing spoken language.

Paula Buttery (Computer Lab) Formal Models of Language 20 / 26

Dependency parsing

Prosody has been used to resolve parsing ambiguity

Briscoe suggested using a shift-reduce parser that favours shift over
reduce wherever both are possible.

In the absence of extra-linguistic information the parser delays
resolution of the grammatical dependency.

Extra features enable an override of the shift preference at the point
where the ambiguity arises, including:

- prosodic information (intonational phrase boundary)

The model accounts for frequencies of certain syntactic constructions
as attested in corpora.

Paula Buttery (Computer Lab) Formal Models of Language 21 / 26

Dependency parsing

Spoken language lacks string delimitation

A fundamental issue that affects syntactic parsing of spoken language
is the lack of the sentence unit (i.e string delimitation)—indicated
in writing by a full-stop and capital letter.

Speech units may be identified by pauses, intonation (e.g. rising for
a question, falling for a full-stop), change of speaker.

Speech units are not much like written sentences due to speaker
overlap, co-constructions, ellipsis, hesitation, repetitions and
false starts.

Speech units often contain words and grammatical constructions that
would not appear in the written form of the language.

Paula Buttery (Computer Lab) Formal Models of Language 22 / 26

Dependency parsing

Spoken language lacks string delimitation

Excerpt from the Spoken section of the British National Corpus

set your sights realistically haven’t you and there’s a lot of people
unemployed and what are you going to do when you eventually leave
college if you get there you’re not gonna step straight into television mm
right then let’s see now what we’re doing where’s that recipe book for that
chocolate and banana cake chocolate and banana cake which book was it
oh right oh some of these chocolate cakes are absolutely mm mm mm
right what’s the topping what’s that icing sugar cocoa powder and vanilla
essence oh luckily I’ve got all those I think yes

Paula Buttery (Computer Lab) Formal Models of Language 23 / 26

Dependency parsing

Spoken language lacks string delimitation

Excerpt from the Spoken section of the British National Corpus

Set your sights realistically haven’t you? And there’s a lot of people
unemployed. And what are you going to do when you eventually leave
college? If you get there. You’re not gonna step straight into television.
Mm right then, let’s see now what we’re doing... Where’s that recipe book
for that chocolate and banana cake? Chocolate and banana cake which
book was it? Oh right. Oh, some of these chocolate cakes are absolutely
mm mm mm. Right, what’s the topping? what’s that? Icing sugar, cocoa
powder and vanilla essence. Oh luckily I’ve got all those I think, yes!

Paula Buttery (Computer Lab) Formal Models of Language 24 / 26

Dependency parsing

Dependency parsers can be useful for parsing speech

Spoken language can look noisy and somewhat grammarless but the
disfluencies are predictable

Honnibal & Johnson’s Redshift parser introduces an edit action, to
remove disfluent items from spoken language:

edit: on detection of disfluency, remove connected words and their
dependencies.

Parser uses extra classifier features to detect disfluency.

Paula Buttery (Computer Lab) Formal Models of Language 25 / 26

Dependency parsing

Example of dependency parser using an edit action

stack buffer action record
his1 ... bankrupt7 shift

his1 company2 ... bankrupt7 shift
his1 company2 went3 ... bankrupt7 left-arc company2 → his1
company2 went3 ... bankrupt7 shift

company2 went3 broke4 ... bankrupt7 left-arc ((((
((((hhhhhhhhwent3 → company2

went3 broke4 ... bankrupt7 shift

went3 broke4 I −mean5 ... bankrupt7 right-arc (((
((((hhhhhhhwent3 → broke4

went3 I −mean5 ... bankrupt7 shift
went3 I −mean5 went6 bankrupt7 edit
company2 went6 bankrupt7 shift
company2 went6 bankrupt7 left-arc went6 → company2
went6 bankrupt7 shift
went3 bankrupt7 right-arc went6 → bankrupt7
went3 terminate root → went6

his1 company2 ���XXXwent3 ���XXXbroke4 ((((
(hhhhhI −mean5 went6 brankrupt7

Paula Buttery (Computer Lab) Formal Models of Language 26 / 26

	Dependency grammars
	Dependency parsing

