
Formal Models of Language

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) Formal Models of Language 1 / 31

Regular grammars give us linear trees

Sstart A B

C D q5

the
guard

girl

chases

the
rabbit

girl

G = (N ,Σ,S ,P) where P =
{A→ aA,A→ a | A ∈ N , a ∈ Σ}

- N = {S ,A,B,C ,D, q5}
- Σ = {the, girl , guard , ...}
- S = S

- P = {S → the A,
A→ guard B | girl B,
B → chases C ,
C → the D,
D → girl | rabbit}

S

the A

girl B

chases C

the D

rabbit

Paula Buttery (Computer Lab) Formal Models of Language 2 / 31

Context-free grammars

Context-free grammars capture phrase structure

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

G = (N ,Σ, S ,P) where
P = {A→ α |
A ∈ N , α ∈ (N ∪ Σ)∗}

A brief excursion into
linguistic terminology...

Paula Buttery (Computer Lab) Formal Models of Language 3 / 31

Context-free grammars

Context-free grammars capture phrase structure

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

When modelling natural
language, linguists label
the non-terminal symbols
with names that encode
the most influential word
in the phrase. They call
this influential word the
head.

- noun phrases, NP,
have a head noun

Paula Buttery (Computer Lab) Formal Models of Language 4 / 31

Context-free grammars

Context-free grammars capture phrase structure

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

- verb phrases, VP,
have a head verb

Paula Buttery (Computer Lab) Formal Models of Language 5 / 31

Context-free grammars

Context-free grammars capture phrase structure

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

- prepositional phrases,
PP, have a head
preposition

Paula Buttery (Computer Lab) Formal Models of Language 6 / 31

Context-free grammars

Context-free grammars capture phrase structure

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

- the head of the
whole string, S , is
always the main verb

Paula Buttery (Computer Lab) Formal Models of Language 7 / 31

Context-free grammars

Context-free grammars capture phrase structure

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

Trees below nodes of the
same type are
interchangeable to yield
another string in the
language:

- NP → N

- N → A N

- N → alice|croquet|...

Paula Buttery (Computer Lab) Formal Models of Language 8 / 31

Context-free grammars

Context-free grammars capture phrase structure

S

NP

N

croquet

VP

VP

V

plays

NP

N

A

pink

N

flamingos

PP

P

with

NP

N

alice

Trees below nodes of the
same type are
interchangeable to yield
another string in the
language:

- NP → N

- N → A N

- N → alice|croquet|...

Paula Buttery (Computer Lab) Formal Models of Language 9 / 31

Context-free grammars

CFGs are often written in Chomsky Normal Form

Chomsky normal form: every production rule has the form, A→ BC , or,
A→ a where A,B,C ∈ N , and, a ∈ Σ.

Conversion to Chomsky Normal Form

For every CFG there is a weakly equivalent CNF alternative.
A→ BCD may be rewritten as the two rules, A→ BX , and, X → CD.

A

B C D

A

B X

C D

CNF is a requirement for some parsing algorithms.

Paula Buttery (Computer Lab) Formal Models of Language 10 / 31

Push down automata

Context-free languages are accepted by push down
automata

A PDA is defined as M = (Q,Σ, Γ,∆, s,⊥,F) where:

Q = {q0, q1, q2...} is a finite set of states.

Σ is the input alphabet.

Γ is the stack alphabet.

∆ ⊆ (Q× (Σ ∪ ε)× Γ)× (Q× Γ∗) is a relation
(Q× (Σ ∪ ε)× Γ)→ (Q× Γ∗) which we write as δ. Given q ∈ Q,
i ∈ Σ and A ∈ Γ then δ(q, i ,A) returns (q′, α), that is, a new state
q′ ∈ Q and replaces A at the top of the stack with α ∈ Γ∗

s is the starting state

⊥ is the initial stack symbol

F is the set of all end states

Paula Buttery (Computer Lab) Formal Models of Language 11 / 31

Push down automata

Moving from one state to the next we may push or pop

in state qx on encountering transition symbol a transition to state qy
popping A from the top of the stack and pushing B onto the stack

qx qy

a : A/B

BEFORE AFTER
A B
z0 z0

in state qx transition to state qy pushing A onto the stack

qx qy

ε : ε/A

BEFORE AFTER
z0 A

z0

in state qx transition to state qy popping A from the stack

qx qy

ε : A/ε

BEFORE AFTER
A z0
z0

Paula Buttery (Computer Lab) Formal Models of Language 12 / 31

Push down automata

A toy context-free grammar

S → NP VP
NP → Pron
NP → Det N
VP → V
VP → V NP
Det → {a, the}

N → {maw, noggin, ...}
Pron → {he, she, him, her}

V → {eats, sings}

S

NP

Det

the

N

maw

VP

V

eats

NP

Pron

him

Paula Buttery (Computer Lab) Formal Models of Language 13 / 31

Push down automata

Recognising a string with a push down automaton

S → NP VP
NP → Pron
NP → Det N
VP → V
VP → V NP

Det → {a,the}
N → {maw, noggin, ...}

Pron → {he, him, her}
V → {eats, sings}

q0

start

q1 q2

q3

q4

q5 q6

q7

q8 q9 q10

q11

ε : ε/VP ε : ε/NP ε : NP/N

ε : NP/Pron

ε : ε/Det a, the : Det/ε

maw, noggin : N/ε

he, she : Pron/ε

ε : z0/z0

ε : VP/NP

ε : VP/V

ε : ε/V

eats, sings : V/ε

ε : NP/NP

ε : z0/z0

Paula Buttery (Computer Lab) Formal Models of Language 14 / 31

Push down automata

Is ‘the maw eats him’ a string in the language?

the q0 z0
the q0-q1 VP z0
the q1-q2 NP VP z0
the q2-q3 N VP z0
the q3-q5 Det N VP z0
maw q5-q6 N VP z0
eats q6-q7 VP z0
eats q7-q8 NP z0
eats q8-q9 V NP z0
him q9-q10 NP z0
him q10-q2 NP z0
him q2-q4 Pron z0
him q4-q7 z0
ε q7-q11 z0

S → NP VP
NP → Pron
NP → Det N
VP → V
VP → V NP
Det → {a,the}
N → {maw, noggin, ...}

Pron → {he, him, her}
V → {eats, sings}

q0

start

q1 q2

q3

q4

q5 q6

q7

q8 q9 q10

q11

ε : ε/VP ε : ε/NP ε : NP/N

ε : NP/Pron

ε : ε/Det a, the : Det/ε

maw, noggin : N/ε

he, him : Pron/ε

ε : z0/z0

ε : VP/NP

ε : VP/V

ε : ε/V

eats, sings : V/ε

ε : NP/NP

ε : z0/z0

”the maw eats him”

Paula Buttery (Computer Lab) Formal Models of Language 15 / 31

Push down automata

Can context-free grammars model natural language?

Cross Serial Dependencies
A small number of languages exhibit strings of the form

noun1 noun2 ... nounn verb1 verb2 ... verbn

Zurich dialect of Swiss German

mer d’chind em Hans es huus haend wele laa hälfe aastriiche.
we the children Hans the house have wanted to let help paint.
we have wanted to let the children help Hans paint the house

Such expressions, i.e. of the form /anbmcndm/, may not be derivable by a
context-free grammar.
mer d’chindn em Hansm es huus haend wele laan hälfem aastriiche.
→ /wanbmxcndmy/

Paula Buttery (Computer Lab) Formal Models of Language 16 / 31

Push down automata

Use the pumping lemma to prove not context-free

The pumping lemma for context-free languages (CFLs) is used to show
that a language is not context-free. The pumping lemma property for
CFLs is:

All w ∈ L with |w | ≥ k can be expressed as a concatenation of five
strings, w = u1yu2zu3, where u1, y , u2, z and u3 satisfy:

|yz | ≥ 1 (i.e. we cannot have y = ε and z = ε)
|yu2z | ≤ k
for all n ≥ 0, u1y

nu2z
nu3 ∈ L

(i.e. u1u2u3 ∈ L, u1yu2zu3 ∈ L, u1yyu2zzu3 ∈ L etc.)

To prove that Swiss German is not context-free, similar proof as for centre
embeddings (last lecture). Except that you need to remember that:
Lreg1 ∩ Lcfg1 = Lcfg2

Paula Buttery (Computer Lab) Formal Models of Language 17 / 31

Mildly context-sensitive languages

Are CSGs required to model natural languages?

Remember the complexity of a language class was defined in terms of the
recognition problem.

Type Language Class Complexity machine
3 regular O(n) DFA
2 context-free O(nc) PDA
1 context-sensitive O(cn) LBA
0 recursively enumerable undecidable Turing

- Modelling natural languages using context-sensitive grammars is very
expensive. In practice we don’t have to because only very limited
constructions are not captured by context-free grammars.

- However, it is still fun to place a limit on the complexity of natural
languages — we are not limited to discussing language classes only in
terms of the Chomsky hierarchy.

Paula Buttery (Computer Lab) Formal Models of Language 18 / 31

Mildly context-sensitive languages

We are not limited to the Chomsky hierarchy

Recursively Enumerable
 Languages

Context Sensitive
Languages

Context Free
Languages

Regular
Languages

Paula Buttery (Computer Lab) Formal Models of Language 19 / 31

Mildly context-sensitive languages

We are not limited to the Chomsky hierarchy

Recursively Enumerable
 Languages

Context Sensitive
Languages

Context Free
Languages

Regular
Languages

Natural
Languages

Paula Buttery (Computer Lab) Formal Models of Language 20 / 31

Mildly context-sensitive languages

The mildly context-sensitive grammars

Joshi defined a class of languages that is more expressive than context-free
languages, less expressive than context-sensitive languages and also sits
neatly in the Chomsky hierarchy.

mildly context-sensitive languages

An abstract language class has the following properties:

it includes all the context-free languages;

members of the languages in the class may be recognised in
polynomial time;

the languages in the class account for all the constructions in natural
language that context-free languages fail to account for (such as
cross-serial dependencies).

Paula Buttery (Computer Lab) Formal Models of Language 21 / 31

Mildly context-sensitive languages

Mildly CSGs are a subset of CSGs that account for
natural language

Recursively Enumerable
 Languages

Context Sensitive
Languages

Mildly Context Sensitive
Languages

Context Free
Languages

Regular
Languages

Paula Buttery (Computer Lab) Formal Models of Language 22 / 31

Mildly context-sensitive languages

In Tree Adjoining Grammars trees are rewritten as trees.

In phrase structure grammar symbols were rewritten with other
symbols

In Tree Adjoining Grammars trees are rewritten as other trees.

The grammar consists of sets of two types of elementary tree:

initial trees or α trees

auxiliary trees or β trees

A derivation is the result of recursive composition of elementary trees via
one of two operations:

substitution

adjunction.

Paula Buttery (Computer Lab) Formal Models of Language 23 / 31

Mildly context-sensitive languages

Tree adjoining grammars: the substitution operation

substitution: a substitution may occur when a non-terminal leaf
(that is, some A ∈ N) of the current derivation tree is replaced by an
α-tree that has A at its root.

X

A
,

A

⇒

X

A

current derivation α-tree resulting tree

Paula Buttery (Computer Lab) Formal Models of Language 24 / 31

Mildly context-sensitive languages

Tree adjoining grammars: the adjunction operation

adjunction:an adjunction may occur when an internal non-terminal
node of the current derivation (some B ∈ N) tree is replaced by a β
tree that has a B at its root and foot.

X

B

,

B

B∗
⇒

X

B

B∗

current derivation β-tree resulting tree

Paula Buttery (Computer Lab) Formal Models of Language 25 / 31

Mildly context-sensitive languages

Tree adjoining grammars: definition

- N is the set of non-terminals

- Σ is the set of terminals

- S is a distinguished non-terminal S ∈ N that will be the root of
complete derivations

- I is a set of initial trees (also known as α trees). Internal nodes of
an α tree are drawn from N and the leaf nodes from Σ ∪N ∪ ε.

- A is a set of auxiliary trees (also know as β trees). Internal nodes of
an β-tree are drawn from N and the leaf nodes from Σ ∪N ∪ ε. One
leaf of a β-tree is distinguished as the foot and will be the same
non-terminal as at its root (the foot is often indicated with an
asterisk).

Paula Buttery (Computer Lab) Formal Models of Language 26 / 31

Mildly context-sensitive languages

Tree adjoining grammars: natural language example

Gtag = (N ,Σ, S , I,A) where:

I = {

NP

N

alice ,

NP

N

croquet
,

NP

N

flamingos
,

S

NP VP

V

plays

NP

}

A = {

N

A

pink

N*

,

VP

VP* PP

P

with

NP

}

Paula Buttery (Computer Lab) Formal Models of Language 27 / 31

Mildly context-sensitive languages

Tree adjoining grammars: natural language example

Deriving: Alice plays croquet with pink flamingos

NP

N

alice

S

NP VP

V

plays

NP

NP

N

croquet ⇒

S

NP

N

alice

VP

V

plays

NP

N

croquet

Paula Buttery (Computer Lab) Formal Models of Language 28 / 31

Mildly context-sensitive languages

Tree adjoining grammars: natural language example

Deriving: Alice plays croquet with pink flamingos

VP

VP* PP

P

with

NP

S

NP

N

alice

VP

V

plays

NP

N

croquet ⇒

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

Paula Buttery (Computer Lab) Formal Models of Language 29 / 31

Mildly context-sensitive languages

Tree adjoining grammars: natural language example

Deriving: Alice plays croquet with pink flamingos

NP

N

flamingos

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

⇒

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

flamingos

Paula Buttery (Computer Lab) Formal Models of Language 30 / 31

Mildly context-sensitive languages

Tree adjoining grammars: natural language example

Deriving: Alice plays croquet with pink flamingos

N

A

pink

N*

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

flamingos ⇒

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

Paula Buttery (Computer Lab) Formal Models of Language 31 / 31

	Context-free grammars
	Push down automata
	Mildly context-sensitive languages

