
Formal Models of Language

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) Formal Models of Language 1 / 31

Course Admin

What is this course about?

- What can formal models of language teach us, if anything, about
human language?

- Can we use information theoretic concepts to describe aspects of
human language?

This course will:

extend your knowledge of formal languages

extend your knowledge of parsing

introduce some ideas from information theory

tell you something about human language processing and acquisition

Paula Buttery (Computer Lab) Formal Models of Language 2 / 31

Course Admin

Study and Supervisions

Technical handouts: Grammars, Information Theory

Formal Language vs. Natural Language handout

Lecture Slides

Two supervision worksheets

Paula Buttery (Computer Lab) Formal Models of Language 3 / 31

Course Admin

Study and Supervisions

Supervision content

coding exercises

some short proofs

short written answers

Useful Textbooks

Jurafsky, D. and Martin, J. Speech and Language Processing

Manning, C. and Schutze, H. Foundations of Statistical Natural
Language Processing

Ruslan M. The Oxford Handbook of Computational Linguistics

Clark, A., Fox, C, and Lappin, S. The Handbook of Computational
Linguistics and Natural Language Processing

Kozen, D. Automata and Computability

Paula Buttery (Computer Lab) Formal Models of Language 4 / 31

What is a language?

A natural language is a human communication system

A natural language can be thought of as a mutually understandable
communication system that is used between members of some
population.

When communicating, speakers of a natural language are tacitly
agreeing on what strings are allowed (i.e. which strings are
grammatical).

Dialects and specialised languages (including e.g. the language used
on social media) are all natural languages in their own right.

Note that named languages that you are familiar with, such as
French, Chinese, English etc, are usually historically, politically or
geographically derived labels for populations of speakers rather than
linguistic ones.

Paula Buttery (Computer Lab) Formal Models of Language 5 / 31

What is a language?

A natural language has high ambiguity

I made her duck

1 I cooked waterfowl for her

2 I cooked waterfowl belonging to her

3 I created the (plaster?) duck she owns

4 I caused her to quickly lower her head

5 I turned her into a duck

Several types of ambiguity combine to cause many meanings:

morphological (her can be a dative pronoun or possessive pronoun
and duck can be a noun or a verb)

syntactic (make can behave both transitively and ditransitively; make
can select a direct object or a verb)

semantic (make can mean create, cause, cook ...)

Paula Buttery (Computer Lab) Formal Models of Language 6 / 31

What is a language?

A formal language is a set of strings over an alphabet

Alphabet

An alphabet is specified by a finite set, Σ, whose elements are called
symbols. Some examples are shown below:

- {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} the 10-element set of decimal digits.
- {a, b, c , ..., x , y , z} the 26-element set of lower case characters of

written English.
- {aardvark , ..., zebra} the 250,000-element set of words in the Oxford

English Dictionary.1

Note that e.g. the set of natural numbers N = {0, 1, 2, 3, ...} cannot be an
alphabet because it is infinite.

1Note that the term alphabet is overloaded
Paula Buttery (Computer Lab) Formal Models of Language 7 / 31

What is a language?

A formal language is a set of strings over an alphabet

Strings

A string of length n over an alphabet Σ is an ordered n-tuple of
elements of Σ.

Σ∗ denotes the set of all strings over Σ of finite length.

- If Σ = {a, b} then ε, ba, bab, aab are examples of strings over Σ.
- If Σ = {a} then Σ∗ = {ε, a, aa, aaa, ...}
- If Σ = {cats, dogs, eat} then

Σ∗ = {ε, cats, cats eat, cats eat dogs, ...}2

Languages

Given an alphabet Σ any subset of Σ∗ is a formal language over
alphabet Σ.

2The spaces here are for readable delimitation of the symbols of the alphabet.
Paula Buttery (Computer Lab) Formal Models of Language 8 / 31

What is a language?

Reminder: languages can be defined using rule induction

Axioms

Axioms specify elements of Σ∗ that exist in L.

(a1)a

Induction Rules

Rules show hypotheses above the line and conclusions below the
line (also referred to as children and parents respectively). The
following is a unary rule where u indicates some string in Σ∗:

u
(r1)

ub

Paula Buttery (Computer Lab) Formal Models of Language 9 / 31

What is a language?

Reminder: languages can be defined using rule induction

Derivations

Given a set of axioms and rules for inductively defining a subset, L, of
Σ∗, a derivation of a string u in L is a finite rooted tree with nodes
which are elements of L such that:

- the root of the tree (towards the bottom of the page) is u itself;
- each vertex of the tree is the conclusion of a rule whose hypotheses are

its children;
- each leaf of the tree is an axiom.

Using our axiom and rule, the derivation for the string abb is:

(a1)a
u

(r1)
ub

(a1)a
(r1)

ab
(r1)

abb

Paula Buttery (Computer Lab) Formal Models of Language 10 / 31

What is a language?

Reminder: languages can also be defined using automata

Recall that a language is regular if it is equal to the set of strings accepted
by some deterministic finite-state automaton (DFA).
A DFA is defined as M = (Q,Σ,∆, s,F) where:

Q = {q0, q1, q2...} is a finite set of states.

Σ is the alphabet: a finite set of transition symbols.

∆ ⊆ Q×Σ×Q is a function Q×Σ→ Q which we write as δ. Given
q ∈ Q and i ∈ Σ then δ(q, i) returns a new state q′ ∈ Q
s is a starting state

F is the set of all end states

Paula Buttery (Computer Lab) Formal Models of Language 11 / 31

What is a language?

Reminder: regular languages are accepted by DFAs

For L(M) = {a, ab, abb, ...}:
M=(Q = {q0, q1, q2},

Σ = {a, b},
∆ = {(q0, a, q1), (q0, b, q2), ..., (q2, b, q2)},
s = q0,

F = {q1}) q0start q1

q2

a

b

b

a

a, b

Paula Buttery (Computer Lab) Formal Models of Language 12 / 31

Regular grammars

Simple relationship between a DFA and production rules

q0start q1 q2 q3 q4
b a a !

a

Paula Buttery (Computer Lab) Formal Models of Language 13 / 31

Regular grammars

Simple relationship between a DFA and production rules

Sstart A B C q4
b a a !

a

Q ={S ,A,B,C , q4}
Σ = {b, a, !}
s = S

F = {q4}

S → bA

A → aB

B → aC

C → aC

C → !

Paula Buttery (Computer Lab) Formal Models of Language 14 / 31

Regular grammars

Regular grammars generate regular languages

Given a DFA M = (Q,Σ,∆, s,F) the language, L(M), of strings accepted
by M can be generated by the regular grammar Greg = (N ,Σ,S ,P)
where:

N= Q the non-terminals are the states of M

Σ = Σ the terminals are the set of transition symbols of M

S = s the starting symbol is the starting state of M

P = qi → aqj when δ(qi , a) = qj ∈ ∆
or qi → ε when q ∈ F (i.e. when q is an end state)

Paula Buttery (Computer Lab) Formal Models of Language 15 / 31

Regular grammars

Strings are derived from production rules

In order to derive a string from a grammar

start with the designated starting symbol
then non-terminal symbols are repeatedly expanded using the rewrite
rules until there is nothing further left to expand.

The rewrite rules derive the members of a language from their internal
structure (or phrase structure)

computational linguistics 3

S

b A

S

b A

a B

S

b A

a B

a C

S

b A

a B

a C

!

S → bA A → aB B → aC C →!

Figure 3: The derivation of the small-
est member of the sheep language,
derived from the grammar in Figure 2

S

b A

a B

a C

!

S

b A

a B

a C

a C

!

S

b A

a B

a C

a C

a C

!
Figure 4: The 3 smallest members of
the sheep language, presented with
their internal structure as defined by
the regular grammar in Figure 2

There is a clear relationship between the grammatical definition
of sheep language and the FSA definition. The start symbol of the
grammar can be mapped to the starting state of the FSA. Then for
each production rule of the form A → aB (where A and B are non-
terminals and a is a terminal) there is a transition between states via
the symbol a. Finally, for each production rule of the form A → a
there is a transition to a terminal state. If the FSA is relabelled as
shown in Figure 5 then it is possible to see this relationship.

S → bA

A → aB

B → aC

C → aC

C → !

Paula Buttery (Computer Lab) Formal Models of Language 16 / 31

Regular grammars

A regular language has a left- and right-linear grammar

For every regular grammar the rewrite rules of the grammar can all be
expressed in the form:

X → aY

X → a

or alternatively, they can all be expressed as:

X → Ya

X → a

The two grammars are weakly-equivalent since they generate the same
strings.
But not strongly-equivalent because they do not generate the same
structure to strings

Paula Buttery (Computer Lab) Formal Models of Language 17 / 31

Regular grammars

A regular language has a left- and right-linear grammar
computational linguistics 5

S

b A

a B

a C

!

S → bA
A → aB
B → aC
C → aC
C → !

S

A !

B a

C a

b

S → A!
A → Ba
B → Ca
C → Ca
C → b

Figure 6: Structures for the smallest
element of the language from the
weakly equivalent left and right-linear
grammars for sheep talk.

Using a regular grammar to model natural language

There are other forms of formal grammar that vary in the combi-
nation of terminal and non-terminals permitted either side of the
production arrow. We shall come back to these in lecture 8 when
we discuss the complexity of different grammars. Broadly speaking,
the less restrictive you are about the form of the production rules
the more expressive your language can be; but this usually has the
side effect of increasing the search space and the complexity of the
search algorithm (more on that later). For now the question is sim-
ply whether we need anything more expressive than the regular
grammar we have discussed in order to model natural language.
The answer is that we probably do need something more expressive
for several reasons:

Centre Embedding - The syntax of natural languages cannot be
described by an FSA, even in principle, due to the presence of
centre-embedding; i.e. infinitely recursive structures described
by the rule, A → αAβ, which generate language examples of
the form, anbn. For instance, Sentence 1 has a centre-embedded
structure. J&M provide the example shown in Sentence 23. 3 See J&M section 12.6, page 447

1. The students the police arrested complained

2. The luggage that the passengers checked arrived.

3. The luggage that the passengers that the storm delayed
checked arrived.

The reason that an FSA cannot describe centre-embedding is
that it has no memory of what has occurred previously in the
sentence. In order to ‘know’ that n verbs were required to match
n nominals already seen, the FSA would have to ‘record’ that n
nominals had been seen; but the FSA has no mechanism to do
this. However, examples of centre-embedding quickly become
unwieldy for human processing (n.b. the difficulty of under-
standing Sentence 3). For finite n we can still model the language
using an FSA: we can design the states to capture finite levels

Paula Buttery (Computer Lab) Formal Models of Language 18 / 31

Phrase structure grammars

A regular grammar is a phrase structure grammar

A phrase structure grammar over an alphabet Σ is defined by a tuple
G = (N ,Σ, S ,P). The language generated by grammar G is L(G):

Non-terminals N : Non-terminal symbols (often uppercase letters) may
be rewritten using the rules of the grammar.

Terminals Σ: Terminal symbols (often lowercase letters) are elements of
Σ and cannot be rewritten. Note N ∩ Σ = ∅.

Start Symbol S : A distinguished non-terminal symbol S ∈ N . This
non-terminal provides the starting point for derivations.3

Phrase Structure Rules P: Phrase structure rules are pairs of the
form (w , v) usually written:
w → v , where w ∈ (Σ ∪N)∗N (Σ ∪N)∗ and v ∈ (Σ ∪N)∗

3S is sometimes referred to as the axiom but note that, whereas in the inductively
defined sets above the axioms denoted the smallest members of the set, here the axioms
denote the existence of particular derivable structures.

Paula Buttery (Computer Lab) Formal Models of Language 19 / 31

Phrase structure grammars

Definition of a phrase structure grammar derivation

Given G = (N ,Σ,S ,P) and w , v ∈ (N ∪ Σ)∗ a derivation step is
possible to transform w into v if:

u1, u2 ∈ (N ∪ Σ)∗ exist such that w = u1αu2, and v = u1βu2

and α→ β ∈ P

This is written w =⇒
G

v

A string in the language L(G) is a member of Σ∗ that can be derived in a
finite number of derivation steps from the starting symbol S .

We use =⇒
G∗

to denote the reflexive, transitive closure of derivation steps,

consequently L(G) = {w ∈ Σ∗|S =⇒
G∗

w}.

Paula Buttery (Computer Lab) Formal Models of Language 20 / 31

Phrase structure grammars

PSGs may be grouped by production rule properties

Chomsky suggested that phrase structure grammars may be grouped
together by the properties of their production rules.

Name Form of Rules
regular (A→ Aa or A→ aA) and A→ a | A ∈ N and a ∈ Σ
context-free A→ α | A ∈ N and α ∈ (N ∪ Σ)∗

context-sensitive αAβ → αγβ | A ∈ N and α, β, γ ∈ (N ∪ Σ)∗and γ 6= ε
recursively enum α→ β | α, β ∈ (N ∪ Σ)∗ and α 6= ε

A class of languages (e.g. the class of regular languages) is all the
languages that can be generated by a particular type of grammar.

The term power is used to describe the expressivity of each type of
grammar in the hierarchy (measured in terms of the number of subsets of
Σ∗ that the type can generate)

Paula Buttery (Computer Lab) Formal Models of Language 21 / 31

Phrase structure grammars

We can reason about properties of language classes

All Chomsky languages classes are closed under union.

L(G1) ∪ L(G2) = L(G3) where G1,G2,G3 are all grammars of the
same type

e.g. the union of a context-free language with another context-free
language will yield a context-free language.

All Chomsky language classes are closed under intersection with a
regular language.

L(G1) ∩ L(G2) = L(G3) where G1 is a regular grammar and G2,G3

are grammars of the same type

e.g. the intersection of a regular language with a context-free
language will yield another context-free language.

Paula Buttery (Computer Lab) Formal Models of Language 22 / 31

Phrase structure grammars

We can define the complexity of language classes

The complexity of a language class is defined in terms of the recognition
problem.

Type Language Class Complexity
3 regular O(n)
2 context-free O(nc)
1 context-sensitive O(cn)
0 recursively enumerable undecidable

Paula Buttery (Computer Lab) Formal Models of Language 23 / 31

Phrase structure grammar and natural language

Can regular grammars model natural language?

Why do we care about the answer to this question?

We’d like fast algorithms for natural language processing applications.

Potentially tells us something about human processing and acquisition
(more in later lectures).

Paula Buttery (Computer Lab) Formal Models of Language 24 / 31

Phrase structure grammar and natural language

Can regular grammars model natural language?

Centre Embedding

Infinitely recursive structures described by the rule, A→ αAβ, which
generate language examples of the form, anbn.

- The students the police arrested complained

S

the students S

the police S arrested

complained

- The luggage that the passengers checked arrived
- The luggage that the passengers that the storm delayed checked
arrived
In general /the a (that the a)n−1bn/ where nouns are mapped to a
and verbs to b

Paula Buttery (Computer Lab) Formal Models of Language 25 / 31

Phrase structure grammar and natural language

Reminder: use the pumping lemma to prove not regular

The pumping lemma for regular languages is used to prove that a
language is not regular. The pumping lemma property is:

All w ∈ L with |w | ≥ l can be expressed as a concatenation of three
strings, w = u1vu2, where u1, v and u2 satisfy:

- |v | ≥ 1 (i.e. v 6= ε)

- |u1v | ≤ l

- for all n ≥ 0, u1v
nu2 ∈ L (i.e. u1u2 ∈ L, u1vu2 ∈ L, u1vvu2 ∈ L,

u1vvvu2 ∈ L, etc.)

Paula Buttery (Computer Lab) Formal Models of Language 26 / 31

Phrase structure grammar and natural language

Reminder: use the pumping lemma to prove not regular

For each l ≥ 1, find some w ∈ L of length ≥ l so that no matter how w is
split into three, w = u1vu2, with |u1v | ≤ l and |v | ≥ 1, there is some
n ≥ 0 for which u1v

nu2 is not in L.

To prove that L = {anbn|n ≥ 0} is not regular. For each l ≥ 1, consider
w = albl ∈ L.

If w = u1vu2 with |u1v | ≤ l & |v | ≥ 1, then for some r and s:

- u1 = ar

- v = as , with r + s ≤ l and s ≥ 1

- u2 = al−r−sbl

so u1v
0u2 = ar εal−r−sbl = al−sbl

But al−sbl /∈ L so by the Pumping Lemma, L is not a regular
language

Paula Buttery (Computer Lab) Formal Models of Language 27 / 31

Phrase structure grammar and natural language

Complexity of sub-language is not complexity of language

Careful here though:

A regular grammar could generate constructions of the form a∗b∗ but
not the more exclusive subset anbn which would represent centre
embeddings.

More generally the complexity of a sub-language is not necessarily the
complexity of a language.

If we show that the English subset anbn is not regular it does not
follow that English itself is not regular.

Paula Buttery (Computer Lab) Formal Models of Language 28 / 31

Phrase structure grammar and natural language

Can we prove English is not regular?

- If you intersect a regular language with another regular language you
should get a third regular language. Lreg1 ∩ Lreg2 = Lreg3

- Also regular languages are closed under homomorphism (we can map
all nouns to a and all verbs to b)

- So if English is regular and we intersect it with another regular
language (e.g. the one generated by /the a (that the a)∗b∗/) we
should get another regular language.
if Leng then Leng ∩ La ∗ b∗ = Lreg3

- However the intersection of an a∗b∗ with English is anbn (in our
example case specifically /the a (that the a)n−1bn/), which is not
regular as it fails the pumping lemma property.
but Leng ∩ La∗b∗ = Lanbn (which is not regular)

- The assumption that English is regular must be incorrect.

Paula Buttery (Computer Lab) Formal Models of Language 29 / 31

Phrase structure grammar and natural language

Problems using regular grammars for natural language

But for finite n we can still model English using a DFA—we can design the
states to capture finite levels of embedding.

So are there any other reasons not to just use a regular grammar?

Redundancy Grammars written using finite state techniques alone are
highly redundant: Regular grammars very difficult to build
and maintain.

Useful internal structures The left-linear or right-linear internal structures
derived by regular grammars are generally not very useful for
higher level NLP applications. We need informative internal
structure so that we can, for example, build up good
semantic representations.

Paula Buttery (Computer Lab) Formal Models of Language 30 / 31

Phrase structure grammar and natural language

Problems using regular grammars for natural language

S

NP

NP

the cat

S

alice saw

VP

grins

S

X

Y

Z

the cat

alice

saw

grins

Paula Buttery (Computer Lab) Formal Models of Language 31 / 31

	Course Admin
	What is a language?
	Regular grammars
	Phrase structure grammars
	Phrase structure grammar and natural language

