
Workbook 5
Introduction
Last week you wrote your own implementation of a Java chat server. In a chat system, it is desirable to
preserve the causal ordering of messages displayed in the client. For example, if message M is written
on client A in response to a message L from client B, then we should ensure that L is displayed before
M on all clients.

Your implementation of a Java chat server currently ensures causal ordering by passing all messages
through a single MultiQueue, however this does not scale for a large system. A more scaleable
solution distributes message delivery across multiple processors, or even multiple servers; however this
may result in message reordering. To fix this, clients need to reorder messages in order to guarantee
messages are displayed in causal order. Therefore, this week, you will add support for vector clocks to
your chat client in order to ensure message causality is preserved in this setting.

Important

An on-line version of this guide is available at:

http://www.cl.cam.ac.uk/teaching/current/FJava

You should check this page regularly for announcements and errata. You might find it useful to refer to
the on-line version of this guide in order to follow any provided web links or to cut 'n' paste example code.

Vector clocks
A vector clock is a data structure and associated algorithm for determining the partial order of events
in a distributed system. In other words, the algorithm allows clients to determine whether, given two
events D and E, if E occurred after D, D occurred after E, or whether E and D were concurrent. The
algorithm requires each client to maintain a vector of counters, called a vector clock. The client's current
vector clock is attached to events when they happen, and the vector clocks attached to events can
subsequently be compared to determine the partial order of events.

In text books, the vector clock is often presented as a mathematical vector of integers; this works fine
for a closed system where the number of communicating processes are known when the system is
designed. However, in our chat system, we do not know in advance how many clients there will be.
Therefore in this workbook we will represent the vector clock by java.util.Map<String, Integer>
where each key in the map represents a client which should be represented by a random unique identifier
generated with the java.util.UUID class. The value in the Map should be an integer fulfilling the
criteria for the vector clock algorithm, as explained below.

We use the notation clock[X] to access the integer, or clock element, associated with the unique
identifier X in a vector clock called clock; and the notation clock[X] += 1 to increment the integer
associated with the unique identifier X by one.

Updating the vector clock
Vector clocks are typically used to track events in distributed systems, and as part of the protocol a
client will increment its own clock element on any event, including when a local event occurs or when it
sends (or receives) a message from (to) another client. This is because communication is, after all, just
an event too. In the messaging context, we want to track the number of messages sent by each client
and therefore require a client to only increment its own clock element whenever it sends a message; it
does not increment its own clock element when receiving a message. This change makes the task of
reconstructing the order of messages for display possible later in this workbook. Note that this definition
of a vector clock is different from that found in the Part IB Concurrent and Distributed Systems course.

1

http://www.cl.cam.ac.uk/teaching/current/FJava


Workbook 5

The rules for updating vector clocks are therefore as follows:

• Each chat client should maintain its own local vector clock for as long as the client is alive.

• When a client with identifier ID, and a vector clock called client sends a message, the client must
increment its own clock element by one (i.e. client[ID] += 1) before attaching a copy of its own
vector clock to the message.

• When a client with identifier ID receives a message, it updates the clock elements in its own vector
clock to be the larger of those in its own clock (called client) and the values found in the message
(called msg). In other words, for all identifiers U, client[U] = max(client[U], msg[U]); if
there are identifiers found only in the client or msg clocks, then those identifiers and values should
be included in the new client vector clock.

Happened-before relationship
Given the vector clocks attached to two messages, the vector clocks can be used to determine whether
message L happened before message M, M happened before L, or whether M and L are concurrent.
Formally, L happened before M iff all the clock elements in L are less than or equal to all clock elements
in M and at least one element is strictly smaller in L than in M. If one clock has elements not present in
the other, then you should assume the missing clock element has the value zero. If neither L happened
before M, nor M happened before L, then M and L are concurrent.

You are now ready to produce your own implementation of the vector clock algorithm.

1. Start by visiting the Ticklet 5 project on Chime https://www.cl.cam.ac.uk/teaching/current/
FJava/ticklet5 and cloning a copy of your repository onto your local machine.

2. Take a look at uk.ac.cam.cl.fjava.messages.Message. Can you see where the vector
clock has been introduced into the message format?

3. Complete the implementation of VectorClock by filling in the sections marked TODO.

Reorder buffer
Your next challenge is to display messages in the correct order. If two messages are causally dependent
on each other then the chat client must display the earlier message first. Otherwise, if two messages are
not causally dependent on each other, the chat client must display the messages in the same order that
they were sent by the server. You are welcome to design your ordering algorithm as you wish, provided
that it meets these two criteria.

One simple and effective approach to meet these criteria is to construct a buffer of messages together
with a VectorClock called lastDisplayed to represent the last message displayed by the client.
Initially, the buffer will be empty. When the first message arrives the value of lastDisplayed should
be set equal to the vector clock of the first message. Any subsequent messages which arrive and
happened before this first message should be dropped; this ensures that the display does not show
older messages out-of-order.

Whenever a new message arrives, it should be placed at the end of the buffer. Then, scan the buffer
from the beginning, looking for a message, M, where all but one of the values in the vector clock
are less than or equal to those found in lastDisplayed and the remaining value in M is exactly
one greater; if such a message is found, this message can be displayed. If such a message M has
been found with a vector clock called msg, the value of lastDisplayed should be updated with
lastDisplayed.updateClock(msg).

Since the arrival of a single message may result in several messages becoming eligible for display, the
buffer should be repeatedly scanned from the beginning every time a new message is displayed until
either the buffer is empty or there are no more messages eligible for display.

2

https://www.cl.cam.ac.uk/teaching/current/FJava/ticklet5
https://www.cl.cam.ac.uk/teaching/current/FJava/ticklet5


Workbook 5

4. Complete your implementation of ReorderBuffer. You can use the algorithm described
above, or your own, provided it meets the two criteria described.

Chat client
Your final task is to upgrade your Chat client to make use of your implementation of VectorClock and
ReorderBuffer. To do so you should start by copying your implementation of the ChatClient from
Ticklet 2 and then updating it to ensure:

• The client generates a random unique identifier using the java.util.UUID class; the result will be
of the form "bc79adc3-985f-4ac4-8e6f-01344dafb963". The unique identifier should be converted to
a String kept for the entire execution time of the program.

• The client should have a VectorClock object.

• Whenever any message is received, the client's vector clock should be updated correctly, the
message added to the reorder buffer, and any messages which can now be displayed are shown
to the user.

• Whenever any message is sent, a copy of the client's vector clock is updated and included in the
message sent to the server. NB: The clock element associated with the client's own unique identifier
in the vector clock attached to the first message should be equal to 1; in the second message, 2;
and so on. The need to include vector clocks in all messages requires you to make use of the new
constructors for all the classes found in the package uk.ac.cam.cl.fjava.messages.

5. Complete your implementation of ChatClient as specified above.

6. Test your implementation of your ChatClient by connecting to port 15007 on
java-1b.cl.cam.ac.uk. In particular, your client will be sent a set of messages which have
been carefully crafted to allow you to check that you display the messages in the correct order.
If the messages are not displayed in incrementing order in your client, then you have a bug —
please fix it before submitting to the automated tester as we retest your code in the same way.

7. Once you are sure your implementation of your ChatClient works on the set of test
messages, you may connect to port 15006 on java-1b.cl.cam.ac.uk to access the new
version of the chat server which has support for vector clocks.

8. Can you successfully connect the latest implementation of your ChatClient to the old version
of the chat server on port 15004? Why? Be prepared to discuss this with your Ticker next week.

3



Workbook 5

Ticklet 5
You have now completed all the necessary code to gain your fifth ticklet. Your repository should contain
the following source files:

src/uk/ac/cam/crsid/fjava/tick5/ChatClient.java
src/uk/ac/cam/crsid/fjava/tick5/ReorderBuffer.java
src/uk/ac/cam/crsid/fjava/tick5/VectorClock.java
src/uk/ac/cam/cl/fjava/messages/ChangeNickMessage.java
src/uk/ac/cam/cl/fjava/messages/ChatMessage.java
src/uk/ac/cam/cl/fjava/messages/NewMessageType.java
src/uk/ac/cam/cl/fjava/messages/Message.java
src/uk/ac/cam/cl/fjava/messages/RelayMessage.java
src/uk/ac/cam/cl/fjava/messages/StatusMessage.java

When you are satisfied you have completed everything, you should commit all outstanding changes
and push these to the Chime server. On the Chime server, check that the latest version of your files
are in the repository, and once you are happy schedule your code for testing. You can resubmit as
many times as you like and there is no penalty for re-submission. If, after waiting one hour, you have
not received a final response you should notify ticks1b-admin@cl.cam.ac.uk of the problem. You
should submit a version of your code which successfully passes the automated checks by the deadline,
so don't leave it to the last minute!

4


	Workbook 5
	Introduction
	Vector clocks
	Updating the vector clock
	Happened-before relationship

	Reorder buffer
	Chat client
	Ticklet 5

