
Further Java Ticklet 2*
In order to gain a star in the mark sheet you must complete this exercise. Completing the exercise does
not gain you any credit in the examination. In this exercise you will implement a custom security manager
for a new chat client called SafeChatClient. Your new version of the chat client should allow only
the following network and file system actions for any code your program downloads:

• Connect to www.cam.ac.uk on port 80 (i.e. web traffic).
• Read (but not modify) the home directory of the user running the chat client.

Start the exercise on Chime here https://www.cl.cam.ac.uk/teaching/current/FJava/ticklet2star
then clone the ticklet2star repository to your local machine. Then copy your implementation
of ChatClient from Ticklet 2 into the class called SafeChatClient inside the
package uk.ac.cam.your-crsid.fjava.tick2star. Take a copy of the source code for
uk.ac.cam.cl.fjava.messages.DynamicObjectInputStream and use it as a starting point for
SafeObjectInputStream in your Ticklet 2* package. Your task for this Ticklet is to modify the code
for SafeChatClient and SafeObjectInputStream so that any code downloaded and invoked by
the client can only perform the file system and network actions as described as above.

Hints 'n' tips
• Replace the use of DynamicObjectInputStream with SafeObjectInputStream inside
SafeChatClient and check your code works in an identical way to ChatClient by connecting to
java-1b.cl.cam.ac.uk on port 15004. The class which is downloaded from the server will print
DONE if it has worked successfully.

• By default, the JVM runs without an instance of the SecurityManager object. You'll need
one in order to be able to define security policies for the class loader. Therefore your
first task is to create an instance of SecurityManager and add it to the virtual machine
(hint: try System.setSecurityManager). Your chat client should not work with the default
SecurityManager, since the default policy does not permit class loaders.

• You should use the following String, representing a URL, as the source of
the security policy: "http://www.cl.cam.ac.uk/teaching/current/FJava/all.policy"
(hint: try System.setProperty("java.security.policy", ...)). Your implementation of
SafeChatClient should now run as before (i.e. with the security flaws). Why?

• Rewrite the addClass method in SafeObjectInputStream to use
java.security.SecureClassLoader instead of java.lang.ClassLoader. The class
SecureClassLoader provides a definition of the method defineClass which takes a fifth
argument of type java.security.ProtectionDomain. (You will need to create an instance of
ProtectionDomain which supports only the permissions the downloaded class should be given.
Apple users may find that additional permissions are needed and should investigate the need for read
and write permissions within apple.* as well as java.version)

• The home directory of the current user can be found using the following expression
System.getProperty("user.home").

• Test your implementation of SafeChatClient by connecting to java-1b.cl.cam.ac.uk on port
15004. The new class file should load and execute and the "wholesome content" should download, but
the "dubious content" should fail to download. Similarly, any modifications to the filesystem should fail.

Submission
When you are satisfied you have completed everything, you should commit all outstanding changes
and push these to the Chime server. On the Chime server, check that the latest version of your files
are in the repository, and once you are happy schedule your code for testing. You can resubmit as
many times as you like and there is no penalty for re-submission. If, after waiting one hour, you have
not received a final response you should notify ticks1b-admin@cl.cam.ac.uk of the problem. You
should submit a version of your code which successfully passes the automated checks by the deadline,
so don't leave it to the last minute!

1

https://www.cl.cam.ac.uk/teaching/current/FJava/ticklet2star


2


	Further Java Ticklet 2*
	Hints 'n' tips
	Submission

