
Workbook 1
In this workbook you will learn how to write a simple Java messaging client which will allow you to send
and receive plain text messages to and from fellow classmates over the Internet.

Important

An on-line version of this guide is available at:

https://www.cl.cam.ac.uk/teaching/current/FJava

You should check this page regularly for announcements and errata. You might find it useful to refer to
the on-line version of this guide in order to follow any provided web links or to cut 'n' paste example code.

Connecting to the Internet
Many distributed systems use the client-server metaphor for communication. This style of
communication will be explored in more detail in the Concurrent and Distributed Systems courses,
as well as the Computer Networking course. A server is a piece of software which runs indefinitely,
accepting requests from multiple clients and providing those clients with any information or other
services they request. For example, a web server runs indefinitely, responding to requests from many
web browsers. Last year you wrote a very simple client when you used an instance of the URL class
to create a URLConnection object, and thus connect to a web server and download descriptions of
board layouts for Conway's Game of Life.

The Java programming language provides several libraries to support the construction of distributed
systems. In this course we are going to explore writing clients and servers with the Socket and
ServerSocket classes respectively. These classes use the TCP/IP communication protocol, which
won't be explained in detail here, but is taught in the Computer Networking course. For this course it
suffices to know that a TCP/IP connection provides a method of transmitting a stream of bytes between
a client and a server (and back again) and that the TCP/IP protocol guarantees reliable and in order
delivery of any bytes sent. A TCP/IP connection is initiated by a client connecting to a server running
on a particular machine and port. For example, the Computer Laboratory website runs on a machine
called www.cl.cam.ac.uk on port number 80. Port numbers allow multiple servers and clients to run
on a single machine.

The Java programming language also supports other types of communication which we will not have
time to explore in detail. The DatagramSocket class supports a datagram service, an unreliable
mechanism for sending packets of data between two computers on the Internet. This class uses
the UDP/IP protocol for communication. The Java MulticastSocket class supports multicast
communication, a method of sending the data to many computers simultaneously.

Reading data from an instance of a Socket class in Java blocks the execution of the program until data
is available. This can be a useful feature, since you will often want your program to wait until at least
some data is available before continuing execution. In the next section you will take advantage of this
feature. Later on, you will discover the limitation of this approach and learn how to write your first multi-
threaded application to overcome this problem.

1

https://www.cl.cam.ac.uk/teaching/current/FJava

Workbook 1

Your next task is to use the Socket class to connect to a server on the Internet to retrieve the data
sent by the server and print it to the console. The data sent by the server starts with a welcome
message, and then proceeds to send the current time, once per second.

2. Start the Ticklet 1 task by visiting the following URL to Chime:
https://www.cl.cam.ac.uk/teaching/current/FJava/ticklet1.

3. Clone the git repository for Ticklet 1 onto your local machine and open your preferred editor.
Please see the Chime instructions for further detail if required: https://www.cl.cam.ac.uk/
teaching/current/FJava/chime.html.

4. Find the Java documentation for the Socket class (e.g. search in https://docs.oracle.com/en/
java/javase/11/docs/api/index.html) and read the documentation for the constructors, as well
as the getInputStream and getOutputStream methods.

5. Create the class StringReceive in the package uk.ac.cam.your-crsid.fjava.tick1.
(Hint: in IntelliJ you can do this by right-clicking on the package where you want to add the
class and select New → Java Class.1) When adding new files you may see a pop-up dialog
box asking whether you want to add the file to Git. You should choose Yes so that your work is
stored in Git. The main method should accept two arguments, the name of the server first, and
the port number of the service second. Your program should connect to the server using an
instance of the Socket class, and do the following three tasks in an infinite loop: (1) read bytes
from the Socket object; (2) interpret the bytes returned as text; and (3) print the text to the
console. You can test your program by connecting to the machine java-1b.cl.cam.ac.uk
on port 15000. If all is well, you should see the following output:

Welcome to the StringReceive server!
Mon Oct 14 10:11:16 BST 2019
...

If you are running your program on the command line you can terminate it with Ctrl+c. If you
are running it inside IntelliJ, you should click on the red square to the left of the console sub-
window to terminate it.

Some hints and tips for this part can be found below.

6. Make sure that your program checks the number of arguments provided and parses them
correctly. If the number of arguments are incorrect or malformed, your program should print

This application requires two arguments: <machine> <port>

to the standard error stream (hint: use System.err) and call return from the main method
to halt your program. If your program cannot connect to the server on the provided port number
it should print

Cannot connect to [machine] on port [port]

to the standard error stream and terminate. Some example arguments and associated
responses are shown in Table 1, “Unit tests for StringReceive”.

1Note: there's a problem with the template configuration for IntelliJ on MCS machines which means this might fail. If this happens
to you, please fix as follows.

2

https://www.cl.cam.ac.uk/teaching/current/FJava/ticklet1
https://www.cl.cam.ac.uk/teaching/current/FJava/chime.html
https://www.cl.cam.ac.uk/teaching/current/FJava/chime.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html

Workbook 1

Hints 'n' tips
• Use the appropriate constructor for the Socket class to initiate a connection to the server.

• Create a local array of bytes of a small fixed size (e.g. byte[] buffer = new byte[1024];)
to store the responses from the server.

• The method getInputStream on the Socket object will return an InputStream object which
allows you to read in the data from the server into an array of bytes.

• An instance of the InputStream class has an associated read method which will pause the
execution of your Java program until some data is available; when some information is available, the
read method will copy the data into the byte array and return the number of bytes read; the number
of bytes read is a piece of information you will find useful later.

• The String class has a number of constructors which enable you to reinterpret an array of bytes as
textual data. Use the following constructor to convert data held in the byte array into a String object:

public String(byte[] bytes, int offset, int length)

args response

none This application requires two arguments: <machine> <port>

java-1b.cl.cam.ac.uk twenty This application requires two arguments: <machine> <port>

java-1b.cl.cam.ac.uk 1024 Cannot connect to java-1b.cl.cam.ac.uk on port 1024

Table 1. Unit tests for StringReceive

A simple Java instant messaging client
Your final task is to use the Socket class to write your first instant messaging client. Your client will
communicate with a server running on java-1b.cl.cam.ac.uk on port number 15001 (note this is
a different port number from the one used earlier). The clients and server will communicate by sending
text between them. You may have noticed that you've already written half the code! Your implementation
of StringReceive is already capable of connecting to the server and displaying any messages sent
between users.

7. Change the port number used by StringReceive in IntelliJ to display the instant messages
sent by any client to the server. You may not see any messages since nobody else is sending
any; you should receive a brief welcome message from the server however.

Your final task in this workbook is to successfully send messages to the instant messaging server. One
of the difficulties which must be overcome is that reading user input from System.in, and reading
data from the server via a Socket object, both block the execution of your program until data becomes

a. Go to File → Settings.

b. In the search box, type "template". Choose File and Code templates from the left-hand side, then choose class from the list
of templates. You'll see the template box is empty. Put the following into it:

#if (${PACKAGE_NAME} && ${PACKAGE_NAME} != "")package ${PACKAGE_NAME};#end
#parse("File Header.java")
public class ${NAME} {
}

c. Click OK.

3

Workbook 1

available. Consequently you must write a multi-threaded application: one thread will run in a loop,
blocking until data is available on a Socket object (and then displaying the information to the user when
it's available); a second thread will run in another loop, blocking until data has been typed in by the user
(and sending the data to the server when it becomes available).

Threads in Java are created either by inheriting from the class java.lang.Thread or implementing
the interface java.lang.Runnable. In either case, you place the code which runs inside the new
thread inside a method with the following prototype

public void run();

You should create a new thread via inheritance today, but you will often find it useful to implement the
Runnable interface in more complicated programs because Java only allows a class to inherit code
from one parent.

A partially completed class, StringChat is available in your repository. Take a careful look at the use
of class Thread. The variable output is a reference to an unnamed child of the class Thread which
overrides the run method. The method start is then called on the reference. When output.start()
is invoked, the body of method run is executed as the rest of the program proceeds. In other words,
the body of run is executed concurrently with the rest of the program. As a result the above program
structure provides one (new) thread of execution to print out messages from the server, whilst another
(the original) thread of execution handles the user input.

8. Why is the Socket object s declared final? Is the keyword final required here, and if
not, what property or properties must s have? Write a comment above the definition of s to
explain why.

9. Complete the implementation of StringChat by completing the sections marked TODO. Your
implementation should not rely directly your implementation of StringReceive, although you
should take inspiration from it, and copy code snippets where appropriate.

10. Test your implementation works by connecting to java-1b.cl.cam.ac.uk on port 15001
and send (and hopefully receive!) messages from your classmates. If you're testing this by
yourself you can always start two copies of StringChat and send messages between them.

Ticklet 1
You have now completed all the necessary code to gain your first ticklet. Your repository should contain
the following source files:

src/uk/ac/cam/your-crsid/fjava/tick1/StringChat.java
src/uk/ac/cam/your-crsid/fjava/tick1/StringReceive.java

When you are satisfied you have completed everything, you should commit all outstanding changes
and push these to the Chime server. On the Chime server, check that the latest version of your files
are in the repository, and once you are happy schedule your code for testing. You can resubmit as
many times as you like and there is no penalty for re-submission. If, after waiting one hour, you have
not received a final response you should notify ticks1b-admin@cl.cam.ac.uk of the problem. You
should submit a version of your code which successfully passes the automated checks by the deadline,
so don't leave it to the last minute!

4

	Workbook 1
	Connecting to the Internet
	Hints 'n' tips

	A simple Java instant messaging client
	Ticklet 1

