Lecture 4: Designing efficient systems

Measuring and optimising human performance through quantitative experimental methods.
Overview of the course

• Theory driven approaches to HCI
• Design of visual displays
• Goal-oriented interaction
• **Designing efficient systems**
• Designing smart systems (guest lecturer)
• Designing meaningful systems (guest lecturer)
• Evaluating interactive system designs
• Designing complex systems
• It’s possible to model human action
• It’s possible (in part) to predict human action
• Efficiency can be predicted, and also measured
• A really fundamental trade-off:
 • Speed versus accuracy
Fitts’ Law (recap)
User actions are information-constrained

How many bits of information to select one of these choices?

How many bits of information to select one of these choices?

The human neuromotor system is limited by information rate - size of target relative to movement
Demonstration of Fitts’ Law
Fitts’ Law – the only equation in HCI!

• How long does it take to point at something?

• Proportional to the Distance to target
• Inversely proportional to Width of target
• Like most human performance (and most things in information theory), it’s a log function:

• Time = k log (2D/W)
Speed-accuracy tradeoff

• Users are capable of doing things faster
• But making more mistakes as a result
• Did your application need speed, or accuracy?

By Anna Frodesiak - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=11443870
Hacking Fitt’s Law: “semantic pointing”

Small changes can have a big effect (1972)

Psychological Evaluation of Two Conditional Constructions Used in Computer Languages

M. E. Sime, T. R. G. Green and D. J. Guest

NEST solution:
IF JUICY THEN
 IF LEAFY THEN
 IF GREEN THEN GRILL
 OTHERWISE BOIL
 OTHERWISE FRY
OTHERWISE
 IF HARD THEN ROAST
 OTHERWISE REJECT

JUMP solution:
IF JUICY GOTO L1
IF HARD GOTO L2
REJECT
L2 ROAST
L1 IF LEAFY GOTO L3
 FRY
L3 IF GREEN GOTO L4
 BOIL
L4 GRILL

=⇒

![Graph showing the comparison between NEST and JUMP solutions.](image-url)
KLM/GOMS: Predicting time (recap)

<table>
<thead>
<tr>
<th>Operator</th>
<th>Time/s</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0.2</td>
<td>Key or button press</td>
</tr>
<tr>
<td>P</td>
<td>1.1</td>
<td>Pointing</td>
</tr>
<tr>
<td>H</td>
<td>0.4</td>
<td>Homing, switching hand between keyboard/mouse</td>
</tr>
<tr>
<td>M</td>
<td>1.35</td>
<td>Mental preparation</td>
</tr>
<tr>
<td>R</td>
<td>?</td>
<td>System response time</td>
</tr>
</tbody>
</table>

(Mouse based)

- MHPKR
- MPK
- MKKKKKKKMPKR

\[
\begin{align*}
& 1.35 + 0.4 + 1.1 + 0.2 + 0.2 = 11.5s \\
& 1.35 + 7*0.2 + 1.35 + 1.1 + 0.2 + 0.2 = 6.45s
\end{align*}
\]

(Keyboard shortcut based)

- MKR
- MKKKKKKKMKKR

\[
\begin{align*}
& 1.35 + 0.2 + 0.2 = 11.5s \\
& 1.35 + 7*0.2 + 1.35 + 0.2 + 0.2 = 6.45s
\end{align*}
\]

VS

= 11.5s
Experiments: Measuring time/usage
How many links should be on a search result page? (10, 20 or 30?)

- User studies: More is better
- When given 30, usage fell - why?
 - Analysis showed 400ms extra latency
Latency experiment

Control Group

Experiment Group (+400 ms latency)

No significant change

Compare these groups

Usage dropped 0.44% after 6 weeks
Remained 0.21% lower after experiment

These are A/B experiments
number of observations

(time)

(statistics: histograms & distributions)
Experimental treatments

- A *treatment* is some modification that we expect to have an effect on usability:
 - How long does Donald take to send his tweet using this great new interface, compared to the crummy old one?
 - Expected answer: *usually* faster, but not *always*
Hypothesis testing

• **Null hypothesis:**
 – What is the probability that this amount of difference in means could be random variation between samples?
 – Hopefully very low ($p < 0.01$, or 1%)
 – Use a statistical *significance test*, such as the *t-test*.

```
only random variation observed
observed effect probably does result from treatment
very significant effect of treatment
```
Sign tests

- In a within subjects experiment it’s possible to compare the results
 - Explores the [null] hypothesis that the median of the pairs is zero
 - Means might not be significant, but the sign can be
 - This is a non-parametric test, so doesn’t depend much on the data, but not very powerful (use a paired t-test, or Wilcoxon rank test instead)

Experiment A: ‘significant’ but boring
Sources of variation

• People differ, so quantitative approaches to HCI must be statistical.
• We must distinguish sources of variation:
 – The effect of the treatment - what we want to measure.
 – Individual differences between subjects (e.g. IQ).
 – Distractions during the trial (e.g. sneezing).
 – Motivation of the subject (e.g. Mondays).
 – Accidental intervention by experimenter (e.g. hints).
 – Other random factors.
• Good experimental design and analysis isolates these.
Effect size – means and error bars

- Difference of two means may be statistically significant (if sample has low variance), without being very interesting.
 - But mean differences must *always* be reported with a confidence interval, or plotted with ‘error bars’

Experiment A: ‘significant’ but boring

Experiment B: interesting, but treat with caution
Problems with controlled experiments

• Huge variation between people (~200%)
• Mistakes mean huge variation in accuracy (~1000%)
• Improvements are often small (~20%)
• … or even negative (because new & unfamiliar)
• … and may result from something unrelated to your design!
The Hawthorne Effect

• Studies on productivity in 1924-1932
 • Do lighting levels affect productivity?
 • Studies appeared to show improvements in both directions
 • Results show the motivational effect of being studied, not of the change
Is efficiency always a design goal?
- What if you wanted to encourage thoughtfulness? Creativity?
Taylorism

- F.W. Taylor (1856-1915)
 - Engineer who invented scientific management
 - Measure workers as if parts in a machine
 - Optimise by measurement and correction
- Not so popular with trade unions!
 - Note that 2nd wave HCI (the turn from human factors to social science) involved working closely with trade unions, especially in Sweden and Denmark
Whose goals are we working for?

• Software paid for by corporate actors (tech companies, venture capitalists, governments) inevitably serves the end of those actors

• When we talk about efficiency, how much are we building systems to configure user behaviours?
Discretionary use systems

If you are not working to someone else’s goal, you can decide whether or not to be efficient (or whether you want to use the system at all)
Efficient creativity?

- What if there isn’t a good measure of productivity?
 - Maximise output of poetry-lines?
 - Maximise musical notes played per second?
 - Maximise Cambridge graduates per year?
- Optimum User Experience
 - What if you wanted people to enjoy what they did?
Research problem:
“How might you structure software development so it can build and sustain software only for people’s goals?”