M = N
) ﬂ\ | | Tl

/R il

=

I }UE =,

4 = i

m— i P
—
£
A |
S
e
v/ by
i b

| =

A
4

Beziens, BASplines
and NURBS

I I I I

Alex Beflon, University @f Cambridge — al€x(@bentonian.c

Hurther-Graphics

pported in partiily Google JK, d




CAD, CAM, and a new motivation:
shiny things

Expensive products are sleek and smooth.
— Expensive products are C2 continuous.

Shiny, but reflections are warped Shiny, and reflections are perfect




The drive for smooth CAD/CAM

e Continuity (smooth curves) can
be essential to the perception of
quality.

e The automotive industry wanted
to design cars which were
aerodynamic, but also visibly of
high quality.

e Bezier (Renault) and de Casteljau
(Citroen) invented Bezier curves

in the 1960s. de Boor (GM)
generalized them to B-splines.




History

The term spline comes from Pos

the shipbuilding industry: long, (\xf’ﬁ” [ ‘T\iﬁ’%
thin strips of wood or metal L T
would be bent and held in T =

place by heavy ‘ducks’, lead
weights which acted as control
points of the curve.

Wooden splines can be
described by C -continuous
Hermite polynomlals which
interpolate n+1 control points.

Top: Fig 3, P.7, Bray and Spectre, Planking and Fastening, Wooden Boat Pub (1996)
Bottom: http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm



http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

Bezier cubic

® A Bezier cubic 1s a function P(t) defined
by four control points:

P(t) = (I-ty’P, + 3t(1-1)°P, + 3£ (I-f)P, + P,

e P and P, are the endpoints of the curve

e P and P, define the other two corners of P,
the bounding polygon.

e The curve fits entirely within the convex
hull of P...P..



Beziers

Cubics are just one example of Bezier splines:

e Linear: P()=(-HP,+tP,
e Quadratic: P(r)= (I-1y°P,+24(1-H)P, + £’P,
o Cubic: P =(1-0°P,+ 3t(1-ty°P, + 32(1-H)P, + £P,

h “n choose i” = n!/il(n-i)!
General: /

P(t) = (n) (1-t)""P, 0<t<1
(
0




Beziers

® You can describe Beziers as nested linear interpolations.:
e The linear Bezier is a linear interpolation between two points:

P(t)=(-1) (P)+ () (P)
e The quadratic Bezier is a linear interpolation between two lines:

P(8) = (1-1) ({-)P;+tP)) + (1) ({-0)P +tP,)

e The cubic is a linear interpolation between linear interpolations between
linear interpolations... etc.

e Another way to see Beziers is as a weighted average
between the control points.

(1-0)P+tP ~

P



Bernstein polynomials

\_Y_}

P(t)y=(1-t)y°P,+ \St(]-t)Z’P L+ \3t2(]-t)’P2 + PP,

e " N N B S \ 1 B

e The four control functions are the four Bernstein

polynomials for n=3. ,
* General form: b, ,,(t) = £0(1 — )"
' (%
 Bernstein polynomials in 0 <7< 1 always sum to 1:

n

2 @ =7 =+ -1)) =1

v=1




Types of curve join

e cach curve is smooth within itself

e joins at endpoints can be:

e (', —continuous in both position and tangent vector

e smooth join in a mathematical sense

e (, — continuous in position, tangent vector in same direction

e smooth join in a geometric sense
e (,— continuous in position only
® “corner”

e discontinuous in position

C (mathematical continuity): continuous in all derivatives up to the n™ derivative

G (geometric continuity): each derivative up to the n™ has the same “direction” to
its vector on either side of the join

C =G




CO — continuous in

position only

tangent vector

C0

G1 — continuous 1n
position & tangent

~ direction, but not
tangent magnitude

C1 — continuous in position &

10



Joining Bezier splines

e To join two Bezier splines with CO
continuity, set P =0, .

e To join two Bezier splines with C1
continuity, require CO and make the tangent
vectors equal: set P =0 and P.-P =0 -0 .

Q1
QO/

P3

/L

11



What if we want to chain Beziers together?

Q, Q, o
We can parameterize this chain
\Q over ¢ by saying that instead of
3 going from O to 1, # moves
/ smoothly through the intervals
P, R, [0,1,2,3]
Consider a chain of splines with
many control points . The curve C(7) would be:
P={P,P,P,P.} Clt)=P(t)* (0<t<1)?1:0)+
Q= {Q, Ql, QZ, Q,} Q(t-1)+ (1 <t<2)?1:0)+

R={R; R, R, R3}
...with CI continuity...
P3=Q,, P,-P,=Q,-Q, .
Q3=R,, Q,-Q;=R R, [0,1,2,3] 1s a type of knot vector.
0, 1, 2, and 3 are the knots.

R(t-2) * (2 <t<3)? 1:0)

12



B-Splines

B-Splines (“Basis Splines”) are a generalization of Beziers. B-splines are
built from a series of splines, joined with known continuity.

® A B-spline curve is defined between ¢ = and ¢
n
P(t) — Z Nz,k(t)Pza tmin S t < tma:r:
1=1

® N, () 1s the basis function of control point P, for parameter k. N_,(¢) 1s
defined recursively:

Nu(t) _ {L ti<t<tiiq

0, otherwise

t —1;

Civl — T
N;p(t) = Nip—1(t)+ i Nit1k—1(t)

bighk—1 — 1 bivk — bit1




B-Splines

B-splines are defined by:

o (P, .P }, telistofn control points

® d, the degree of the curve

® k =d+1, called the parameter of the curve
® [t,...t_ 1, aknotvector of (k+n) parameter values (“knots”)

A B-spline curve will have the following traits:

e d = k-1 1s the degree of the curve, so k is the number of control

points which influence a single interval
e Ex: a cubic (d=3) has four control points (k=4)

® There are ktnknots ¢, and ¢ <¢_ forall ¢,
e Each B-splineis C 2) continuous: continuity 1s degree minus one, so
a k=3 curve has d=2 and 1s C1

J

http://www.mikekrummhoefener.com/toy-story-char-grig/4



http://www.mikekrummhoefener.com/toy-story-char-grid/

B-Splines

[ 2 [ t4| t5|

k=3 N, (& N,

k=4 N, (v




| ) L <<t
ENZJ (t> _ {O, otherwise

B-Splines
I R I ! | | 1 | | 1 | | [ A I
0 11 1 T 1 T 2 1 5 13 1 113 14 T 17 15
N ! (1) N s (1) N 3 (1) N ‘ (1) N 5 (1)
Y )
t,=0.0 (N, (0)=1,0=1<1 ) [NZ’I(t)=1,1§t<2 }
?iéjg N, (0=1,2<1<3 | [N4’1(t)=1,3§t<4 }
[ =30 N, (F1,4<t<5
t,=4.0 )
{ =50
N

Knot vector = {0,1,2,3,4,5}, k=1 — d =0 (degree = zero) 1



t—t bivk — 1
Nik(t) = — N1 (t)+— Nit1-1(t)
. tin 1 — 1 itk — it
B-Splines

N, (1) N, ,(D) Ny 5(0) Ny D
p N\
t—0 2 —t t 0<t<l1
N o(t) = 1 ONl,l(t) tToo 1N2a1(t) - {2 —t 1<t<?2
. <
t—1 33—t t—1 1<t<?2
Nyo(t) = 2_1N2,1(t) 3_2N3’1(t) - {g—t 2<t<3
L J
> N
t—9 4 —t t—2 2<t<3
\N?”Q(t) = 3oVl + 73 Null) = {4 —t 3st<4
> I
t—3 5—t t—3 3<t<4
\N4,2(t) = 73 Naa(t) + == Nsa(t) = {5 —t 4<t<5

J

Knot vector = {0,1,2,3,4,5}, k=2 — d =1 (degree = one)



t—t bivk — 1
Nix(t) = ik—1(1) Nit1r-1(t)
: bivk—1 — 1 bivk — tin1
B-Splines
N / (0 ’ N N (D)
- F_0 3 _¢ ( t*/2 0<t<1 )
Nig(t) = 5= Niat) + 5= Neo(t) = ¢ £ +30 = 3/2 1<t <2
- - (3—1)?2/2 2<t<3
- * <
F 1 44 [ (t—1)%/2 1<t<?2
Ny s(t) = 3 1Nu(lt) + 7 2N3,2(t) = —t2+5t—-11/2 2<t<3
L - B | (4-1)?%2  3<t<4
[ 4 2 \
i o 5 (t—2)%/2 2<t<3
- - (5-1)2/2 4<t<5

\_ . j J

Knot vector = {0,1,2,3,4,5}, k=3 — d =2 (degree = two) 1=



Basis functions really sum to one (k=2)

+ + . +
N, (1) N_ (1) N, (1) le(t)
32 112 2,2 J,2 ,
41 / \\
1o.8 / 4 A
The sum of
the four basis
= 106 functions is
< fully defined
104 (sums to one)
between
Lo t, (t=1.0) and
| to (t=4.0).
0 y 0?5 ]}. 1?5 i 2?5 '_=’» 3?5 i 4?5
19
1-0.2




Basis functions really sum to one (k=3)

The sum of
the three
functions is
fully defined
(sums to one)
between

t, (t=2.0) and
t, (t=3.0).

e
[, =

4.5

—

20



B-Splines

3

2.5
2
1.5
1 o
0.5
0.5 1 1.5 2 2.5 3

At k=2 the function is piecewise
linear, depends on P ,P PP , and is
fully defined on [z, ¢,).

2.5

1.5

0.5

_,

0.5 1 1.5 2 2.5
At k=3 the function is piecewise
quadratic, depends on P »P,P, and 1s

fully defined on [7,, ¢)).

Each parameter-£ basis function depends on k+7 knot values; N, , depends on ¢,

through ¢,

+

inclusive. So six knots — five discontinuous functions — four piecewise

linear interpolations — three quadratics, interpolating three control points. n=3
control points, d=2 degree, k=3 parameter, n+k=6 knots.

Knot vector = {0,1,2,3,4,5}

21



Non-Uniform B-Splines

e The knot vector {0,1,2,3,4,5} 1s uniform:
L ™ Loty \v/ti'

e Varying the size of an interval changes the
parametric-space distribution of the weights assigned to
the control functions.

e Repeating a knot value reduces the continuity of the
curve 1n the affected span by one degree.

e Repeating a knot £ times will lead to a control function
being influenced only by that knot value; the spline will
pass through the corresponding control point with CO
continuity.

22



Open vs Closed

e A knot vector which repeats its first and last knot values &
times 1s called open (or ‘clamped’), otherwise closed.

e Repeating the knots k£ times 1s the only way to force
the curve to pass through the first or last control
point.

e Without this, the functions N,, and N (which
weight P, and P ) would still be ‘ramping up’ and not

yet equal to one at the first and last &
— —)
\ 5 3 as 5 7




Open vs Closed

e Two open examples you may recognize:
e /=3, n=3 control points, knots={0,0,0,1,1,1}
e /=4, n=4 control points, knots={0,0,0,0,1,1,1,1}

Weights Spline Weights Spline

Control functions Control functions m
«\\\\ . k';\\
k|2 k|3

pppppppppp

24



NURBS curves

e NURBS (“Non-Uniform Rational
B-Splines”) are a generalization of

the Bezier curve concept:

e NU: Non-Uniform. The knots in the knot
vector are not required to be uniformly
spaced.

® R: Rational. The spline may be defined
by rational polynomials (homogeneous
coordinates.)

e BS: B-Spline. A generalization of Bezier
splines with controllable degree.

Images from www.rhino3d.com/qgallery 25



http://www.rhino3d.com/gallery

Non-Uniform Rational B-Splines

e Repeating knot values 1s a clumsy way to
control the curve’s proximity to the control

point.

e We want to be able to slide the curve nearer or
farther without losing continuity or introducing
new control points.

e The solution: homogeneous coordinates.

® Associate a “‘weight’” with each control point: ..

26



Non-Uniform Rational B-Splines

e Recall: [x, y, z, a)]H —[x/0,y/w, z/0]
e Or:[x,y zl] — [xw, yo, zo, o]
e The control point
P=(x, ¥, 2)
becomes the homogeneous control point
Py =x0, y0,z0)
e A NURBS in homogeneous coordinates 1is:

PH@) — Z Nzk@)RH; tmin S < tma:c
1=1

H

27



Non-Uniform Rational B-Splines

e To convert from homogeneous coords to normal
coordinates:

Ty (t) = > i (wiwi)(Nik(t))

yu(t) = i1 (iwi) (Nig(t))
2y(t) = i (Zzw)( k(t))
w(t) = i (Wi)(N ())

(x(O)=xy () lt)
y(@) =y, )/ a(r) )

2=z, ()




Non-Uniform Rational B-Splines

o A piecewise rational curve 1s thus defined by:

Z Rz k: 27 mmt < tmax

with supportlng rational basis functions:
w; IN; k t

Ri,k(t) — n — ( )

D=1 WiV k(¢)

This 1s essentially an average re-weighted by the o’s.

e Such a curve can be made to pass arbitrarily far or near to
a control point by changing the corresponding weight.

29
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