

Web application Scaling
Pete Stevens

Mythic Beasts Ltd

Basics

A perfectly scalable site has:

The same user experience with 100 users as it
does with 10 billion.

Marginal cost of adding a user is a monotonic
decreasing function of number of users.

Resource limitations

● CPU cycles
● Disk IO
● RAM
● Money
● Bandwidth
● Development time
● Staff time
● Products
● Change control

Methods of scaling

● Add servers
● Grow servers
● Cache data
● Improve software performance
● Parallelize

Single tenant architecture

● Set of servers per customer.
● Strong security separation between customers.
● Each customer is scaled individually.
● Easy to meet security requirements.

LBLB

LB

App server

App server

Database

LBLB

LB

App server

App server

Database

Customer 1

Customer 2

Single Tenant Architecture

● Gets very expensive in servers / virtual machines /
containers.

● Automated patch and update management.
● More secure architecture and firewalling.
● Allows on premise and cloud solutions.
● Allows different versions per customer – no forced

upgrades.
● Billing is easy – buy fixed sizes.
● Examples, ResourceSpace, Pagely.

Multi-tenant architecture

● One instance contains all the customers.
● Security provided by application code.
● Trivial to add new customers.
● No scaling issues for individual customers.
● Scale the whole cluster.

LB

LB

App server

App server

DatabaseApp server

App server

Database

Multi-tenant architecture

● Any bottleneck downs everything.
● Security hard, e.g. Dropbox 2011, Valve 2015.
● Single codebase does the superset of customer

demands.
● Maintenance much simpler.
● Much more efficient resource usage.
● All customers must run the latest version.
● Per customer feature requests very difficult.

Vertical scaling

● If service too slow, replace with faster computer.
● Easy to implement, especially with cloud

providers.
● Moores law is no longer helping, computers have

stopped getting faster, they merely parallelise
better.

● Typical for database servers and smaller
organisations.

Horizontal Scaling

● Add more application servers, share the load
between them.

● Applications need to be stateless.
● SQL databases don't horizontally scale.
● NoSQL databases don't guarantee consistency.
● Sharding data can help, but cross database

write locks still don't scale.

Caching

● Caching stores the results of calculations and
reuses them.

● Multiple points to cache:
– Output (varnish).

– Intermediate objects (redis/memcache).

– In database (Mysql Query cache).

– Object code (e.g. php-apc).

– Custom (e.g. Wordpress Supercache)

Caching

● Cache invalidation is very hard.
● How important is it not to serve stale data?
● e.g. Bank account value,

– vitally important to update the balance after every transaction.

– Better to return an error than allow someone to use an incorrect
balance.

– Timeout much less bad than allowing someone to spend money twice.

● e.g. Social media plugins
– Much more important to deliver a page

– If a 'number of shares' figure is incorrect, who cares?

Caching

● Caching allows you to reduce the load on your servers.
● Vertical scaling lasts longer.
● Fewer servers horizonally scaling.
● But, may become critical for site operation.
● A cache flush might take your site offline.
● Distributed horizontal scaling of your caching.
● Different people may see different things – does this

matter?

Base architecture

● Simple architecture that is a good starting point
for most applications

LB

LB

Varnish cache

Varnish cache

App server

App server

App server

Object cache

Object cache

Database

Database

Scaling the base architecture

● Load balancers – horizontal
● Varnish cache – horizontal
● App servers – horizontal
● Object cache – horizontal
● Database – vertical

Database scaling

● Shard data across multiple database servers to
scale horizontally

● Locks that span multiple servers are extremely
expensive

● Put data into the appropriate type of data store
which means understanding the type of data and
likely access patterns

● AWS has 15 different data stores available
including three different SQL database types

Application performance

● By default a webpage will take between 0.1s
and 1s to render.

● If it's quicker than 0.1s the developers will add
functionality.

● If it's slower than 1s the developers will be
annoyed enough to improve the performance.

Load profiles

● Business application, 9am – 6pm peak.
● Consumer application, lunchtime and evening

peaks.
● Product site, peaks for product launches.
● Viral advertising / social media, exponential

growth.
● Advertising / press, huge spike, exponential

decay.

Example: Netflix

● Netflix have the main website in Amazon AWS.
● Every part was re-architected to horizontally scale

– Cassandra NoSQL database.
● A constraint is bandwidth costs, Netflix costs

$9.99/month and consumes 7GB of data per hour
for UltraHD (15Mbps).

● Amazon pricing, $0.05/GB in volume. 28
hours/month and they lose money assuming
everything else is free.

Netflix CDN

● Internet Exchange ports, 10Gbps for ~ $1500.
● 10Gbps is roughly 2000TB/month =

$0.0008/GB.
● 100Gbps ports ~ $10000 = $0.0005/GB.
● Deploy CDN boxes directly into ISPs, $10k

hardware cost, 4x10Gbps links, over 2 years =
$0.0001/GB.

Netflix CDN

● Slower rollout and coordination compared with
Cloud providers.

● Bandwidth costs 1/10th to 1/100th.
● Trade staff and capital costs for cheaper

bandwidth.
● Entrenches a competitive advantage – cloud

based competitors run out of money very
quickly.

Example: Blackblaze

● Online backup company.
● Store lots of large files as cheaply as possible.
● $5/month for unlimited data storage.
● Very important to keep the data storage costs

as low as possible.

Example: Blackblaze

● Custom storage hardware.
● Storage pod: 45 hard disks, 3x15 drive RAID6.
● Vault : 20 storage pods.
● Each file is Reed-Solomon encoded, 17 data, 3

partity and split across a Vault.
● Each pod runs Apache, files over HTTPs.
● Front-end assembles from the 20 pods.

Example: Blackblaze

● Vault contains 900 hard disks, 663 disks of
capacity, 237 of redundancy.

● Survives multiple drive failures and 3 pod
failures.

● Cloud storage option, AWS is $0.03/GB.
Blackblaze is $0.005/GB.

Facebook: Photos

● First implementation: Big network file system and a
mysql database to hold the meta-data.

● Vertical scaling, lasted three months before they
needed caching layers for small and common
images.

● Eventually a complete rewrite to store binary chunks
indexed by database.

● NFS doesn't work with 80bn files!
● They would do exactly the same thing today.

Facebook: Photos

● The NFS solution was quick to implement and
allowed them to work out the functionality.

● Optimisation was driven by the access patterns.
– Small images much more commonly accessed than

large ones.

– Cache those preferentially.

– Use a CDN (in-house, see Netflix for bandwidth
costs) to offload.

Facebook: PHP

● The Facebook stack is fairly simple:
– Database (slow, persistent).

– Application (PHP).

– Memcached – 28TB of RAM to allieviate PHP
cycles and database access.

– Load balancers.

– Services (varied).

Facebook: PHP

● Memcached reduces the PHP processing load
enormously.

● But still >10,000 servers processing PHP.
● HipHop VM, virtual machine to speed PHP

execution.
● Roughly 3-5x performance increase.
● Huge cost savings.

Example: Music Streaming Site

● 100 machine cluster, ~ 400 CPUs, large application.
● Memcache used to store all the intermediate

calculations.
● Nobody noticed that with the cache off the front

page had increased from 0.1s of CPU time to 100s
per request as memcache hit it.

● One day we flushed the cache in production – 10
minute outage while it rebuilt all the intermediate
objects.

Raspberry Pi

● The original aim was to produce 10k tiny
computers.

● Run linux, designed to be programmable by
computer science students, the first wave of
which are sat in this lecture theatre.

● Severely budget & time constrained.

Raspberry Pi v1

● Launch of the original Raspberry Pi.
● Volunteer project, minimal funding – hosting

budget £4/month.
● Aim: direct 10,000 or more people to RS

components and Farnell who were selling
Raspberry Pi.

● Wordpress based dynamic site, blog +
comments + forums.

Raspberry Pi v1

● Replaced site with a static webpage
● Performance improved from ~5 pages/second to

1000+
● Sent >100,000 visitors to the vendors

– Who fell over – linked to their search pages which were
dynamic and not cacheable.

– 1s+ of CPU time per visitor on their sites.

– 'Bulletproof' major e-commerce websites overwhelmed.

– Bottleneck was belief.

Raspberry Pi v1

● Human resource limits:
– Not enough staff (1 part time) to answer queries.

– Not enough stock to make the products.

● Post launch the website traffic never returned
low enough to turn the existing site back on.
– Vertical scale – move from shared hosting account

to big dedicated server (4 cores / 96GB RAM)
(2012 – this was a huge machine).

Raspberry Pi. DDOS

● Flooded with tcp connection opens.
● Syncookies means CPU but no RAM until

connection open.
● Ran out of CPU to process syn packets.
● Ran out of network capacity to receive syn

packets (500k/sec, > 1Gbps).
● Front with 4x1Gbps dual core machines just for

MD5 sum calculations.

Raspberry Pi: Downloads

● Donated a downloads server with a 100Mbps
unlimited use network port.

● Images are ~ 1GB in size, 100Mbps means
1m40 to deliver an image ~ 800 per day.

● Filled immediately, built a mirror network from
donated servers and bandwidth.

Raspberry Pi Downloads

● 1Gbps means we can serve an image
download every 8s per 1Gbps network port.

● Scale horizontally, add little servers that deliver
1Gbps each – handily on the DDOS servers.

● Can deliver an image every second – 80000+
per day without the CDN.

● Raspberry Pi uses more bandwidth than the
University of Cambridge.

Wordpress

● Wordpress is a PHP application.
● Naive configuration under apache/nginx runs a

php interpreter for every page request and
compiles and executes 400k lines of PHP on
every request.

● Dynamic language – interpreted on every request.
● Many CPU cycles spent compiling PHP on every

request.

PHP caching

● Advanced PHP Cache, compile once, store
intermediate object code.

● Only recompile when the source files change.
● Improves Wordpress performance by up to

50%.

Wordpress Caching

● Wordpress generates semi-static pages :
– Only change when user content is added.

– Supercache stores the generated HTML and outputs that
unless the content has changed.

– To avoid recompiling the whole of wordpress on every
request, if a cached page exist it just compiles a shim to
output a static file.

– Dynamically changes the code to compile based on the
data in the request.

– If APC caches the object code...

Raspberry Pi. Performance

● Types of request:
– Dynamically generated page (0.5s CPU, 8/second)

~ 10%.

– Wordpress cached page (0.01s CPU, 400/second)
~ 90%.

– Error page served from the load balancers
(0.0001s, 40k/second) ~0%.

Raspberry Pi 2

● Launch of Raspberry Pi 2.
● Simultaneous press launch at 9am, radio, TV,

multiple internet sites.
● Expecting 1m + visitors ~ 20 per second.
● Expecting a high cache hit ratio.
● In the event the site is overwhelmed we set the

error page to the announcement – repeat of Pi 1
launch.

Raspberry Pi 2: Mistakes

● Super top secret – I didn't know about the
launch.

● Instead of monitoring and managing the site, I
was without internet access on this beach.

Raspberry Pi 2

● Any logged in user doesn't get a cached page
– Because of our comments plugin this includes

anyone who's ever posted a comment in the past.

– Cache hit rate much lower than expected.

● On posting of a comment the cache is
invalidated.

Raspberry Pi 2: Cache invalidation

● Wordpress / Apache don't queue requests, they
process them all in parallel.

● Lack of a cached page means that every process
starts generating replacement pages at the same time.

● If number of requests > number of cores, each
additional request slows down the currently processing
ones.

● If the request rate is high enough, a page generation
will never complete.

Raspberry Pi 2: Cache invalidation

● Eventually the load balancers decide the site has failed and
serve the error page.

● Load subsides and the cached page is created.
● Traffic is directed back and the site works again.
● Until the next comment is posted.
● We run into performance issues at 2000 simultaneous visitors,

peak about 4500 ~ 10 million visitors on launch day.
● Not a disaster, but not really a success either.
● Exercise: write some code to simulate just how bad this is,

asymptotic to a maximum performance level.

PiZero

● Site architecture change
– Lots of VMs for each part of the site.

– Key parts all load balanced over multiple VMs.

– Easy to add VMs – scale all the PHP processing
horizontally.

– Split the databases into separate VMs – shard the
data stores.

– Scale the database servers vertically and offload
with caching.

PiZero

● Multiple Webserver VMs should solve the
comment posting problem
– While one VM is under heavy CPU load the load

will be transferred to the other VMs.

– Providing they don't all invalidate simultaneously.

– Not prepared to put this to chance.

– We know, that our test setup isn't good enough to
catch the comment posting issues we had last time.

PiZero

● Additional static caching
– Pre-render the most popular pages on the site and

always serve static HTML.

– Might be up to 60s out of date, but always fast.

– Could achieve with Varnish (see earlier slides),
possibly in a more clever way.

– Simple configuration reduces the chance of
something going wrong.

PiZero

● Over 10000 simultaneous viewers at peak.
● ~ 75 million page views in a day.
● We probably could have handled 20k-50k,

network limitations in the host (4Gbps) was the
next obvious bottleneck.
– We don't know where the next non-obvious

bottleneck is!

PiZero: Magpi

● PiZero was launched on the front of the MagPi
magazine
– MagPi website sees a huge influx of traffic.

– Designed by the 'techie genius' of the design agency.

– Delivered late – night before – no significant testing.

– Page generation time ~ 0.2s => 10,000 visitors/second
=> 2000 cores.

– Live patch the configuration/code to reduce CPU load.

PiZero: Magpi

● Wordpress cache, set to maximum caching.
● Deploy static page generation for the most popular

pages.
● Called Google+ 8 times per page request to get

number of shares – deleted functionality.
● Dynamic elements of pages and menus – all forced

static on a 60s refresh.
● Ideally done in Varnish but Keep It Simple Stupid

(KISS) applies – minimal changes to production.

Scaling: The End.

● Questions?
● Further questions, pete@ex-parrot.com
● https://twitter.com/Mythic_Beasts
● https://twitter.com/Raspberry_Pi

mailto:pete@ex-parrot.com
https://twitter.com/Mythic_Beasts
https://twitter.com/Raspberry_Pi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

