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Basics

A perfectly scalable site has:

The same user experience with 100 users as it 
does with 10 billion.

Marginal cost of adding a user is a monotonic 
decreasing function of number of users.



  

Resource limitations

● CPU cycles
● Disk IO
● RAM
● Money
● Bandwidth
● Development time
● Staff time
● Products
● Change control



  

Methods of scaling

● Add servers
● Grow servers
● Cache data
● Improve software performance
● Parallelize



  

Single tenant architecture

● Set of servers per customer.
● Strong security separation between customers.
● Each customer is scaled individually.
● Easy to meet security requirements.
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Single Tenant Architecture

● Gets very expensive in servers / virtual machines / 
containers.

● Automated patch and update management.
● More secure architecture and firewalling.
● Allows on premise and cloud solutions.
● Allows different versions per customer – no forced 

upgrades.
● Billing is easy – buy fixed sizes.
● Examples, ResourceSpace, Pagely.



  

Multi-tenant architecture

● One instance contains all the customers.
● Security provided by application code.
● Trivial to add new customers.
● No scaling issues for individual customers.
● Scale the whole cluster.

LB

LB

App server

App server

DatabaseApp server

App server

Database



  

Multi-tenant architecture

● Any bottleneck downs everything.
● Security hard, e.g. Dropbox 2011, Valve 2015.
● Single codebase does the superset of customer 

demands.
● Maintenance much simpler.
● Much more efficient resource usage.
● All customers must run the latest version.
● Per customer feature requests very difficult.



  

Vertical scaling

● If service too slow, replace with faster computer.
● Easy to implement, especially with cloud 

providers.
● Moores law is no longer helping, computers have 

stopped getting faster, they merely parallelise 
better.

● Typical for database servers and smaller 
organisations.



  

Horizontal Scaling

● Add more application servers, share the load 
between them.

● Applications need to be stateless.
● SQL databases don't horizontally scale.
● NoSQL databases don't guarantee consistency.
● Sharding data can help, but cross database 

write locks still don't scale.



  

Caching

● Caching stores the results of calculations and 
reuses them.

● Multiple points to cache:
– Output (varnish).

– Intermediate objects (redis/memcache).

– In database (Mysql Query cache).

– Object code (e.g. php-apc).

– Custom (e.g. Wordpress Supercache)



  

Caching

● Cache invalidation is very hard.
● How important is it not to serve stale data?
● e.g. Bank account value, 

– vitally important to update the balance after every transaction.

– Better to return an error than allow someone to use an incorrect 
balance.

– Timeout much less bad than allowing someone to spend money twice.

● e.g. Social media plugins
– Much more important to deliver a page

– If a 'number of shares' figure is incorrect, who cares?



  

Caching

● Caching allows you to reduce the load on your servers.
● Vertical scaling lasts longer.
● Fewer servers horizonally scaling.
● But, may become critical for site operation.
● A cache flush might take your site offline.
● Distributed horizontal scaling of your caching.
● Different people may see different things – does this 

matter?



  

Base architecture

● Simple architecture that is a good starting point 
for most applications
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Scaling the base architecture

● Load balancers – horizontal
● Varnish cache – horizontal
● App servers – horizontal
● Object cache – horizontal
● Database – vertical



  

Database scaling

● Shard data across multiple database servers to 
scale horizontally

● Locks that span multiple servers are extremely 
expensive

● Put data into the appropriate type of data store 
which means understanding the type of data and 
likely access patterns

● AWS has 15 different data stores available 
including three different SQL database types



  

Application performance

● By default a webpage will take between 0.1s 
and 1s to render.

● If it's quicker than 0.1s the developers will add 
functionality.

● If it's slower than 1s the developers will be 
annoyed enough to improve the performance.



  

Load profiles

● Business application, 9am – 6pm peak.
● Consumer application, lunchtime and evening 

peaks.
● Product site, peaks for product launches.
● Viral advertising / social media, exponential 

growth.
● Advertising / press, huge spike, exponential 

decay.



  

Example: Netflix

● Netflix have the main website in Amazon AWS.
● Every part was re-architected to horizontally scale 

– Cassandra NoSQL database.
● A constraint is bandwidth costs, Netflix costs 

$9.99/month and consumes 7GB of data per hour 
for UltraHD (15Mbps).

● Amazon pricing, $0.05/GB in volume. 28 
hours/month and they lose money assuming 
everything else is free.



  

Netflix CDN

● Internet Exchange ports, 10Gbps for ~ $1500.
● 10Gbps is roughly 2000TB/month = 

$0.0008/GB.
● 100Gbps ports ~ $10000 = $0.0005/GB.
● Deploy CDN boxes directly into ISPs, $10k 

hardware cost, 4x10Gbps links, over 2 years = 
$0.0001/GB.



  

Netflix CDN

● Slower rollout and coordination compared with 
Cloud providers.

● Bandwidth costs 1/10th to 1/100th.
● Trade staff and capital costs for cheaper 

bandwidth.
● Entrenches a competitive advantage – cloud 

based competitors run out of money very 
quickly.



  

Example: Blackblaze

● Online backup company.
● Store lots of large files as cheaply as possible.
● $5/month for unlimited data storage.
● Very important to keep the data storage costs 

as low as possible.



  

Example: Blackblaze

● Custom storage hardware.
● Storage pod: 45 hard disks, 3x15 drive RAID6.
● Vault : 20 storage pods.
● Each file is Reed-Solomon encoded, 17 data, 3 

partity and split across a Vault.
● Each pod runs Apache, files over HTTPs.
● Front-end assembles from the 20 pods.



  

Example: Blackblaze

● Vault contains 900 hard disks, 663 disks of 
capacity, 237 of redundancy.

● Survives multiple drive failures and 3 pod 
failures.

● Cloud storage option, AWS is $0.03/GB. 
Blackblaze is $0.005/GB.



  

Facebook: Photos

● First implementation: Big network file system and a 
mysql database to hold the meta-data.

● Vertical scaling, lasted three months before they 
needed caching layers for small and common 
images.

● Eventually a complete rewrite to store binary chunks 
indexed by database.

● NFS doesn't work with 80bn files!
● They would do exactly the same thing today.



  

Facebook: Photos

● The NFS solution was quick to implement and 
allowed them to work out the functionality.

● Optimisation was driven by the access patterns.
– Small images much more commonly accessed than 

large ones.

– Cache those preferentially.

– Use a CDN (in-house, see Netflix for bandwidth 
costs) to offload.



  

Facebook: PHP

● The Facebook stack is fairly simple:
– Database (slow, persistent).

– Application (PHP).

– Memcached – 28TB of RAM to allieviate PHP 
cycles and database access.

– Load balancers.

– Services (varied).



  

Facebook: PHP

● Memcached reduces the PHP processing load 
enormously.

● But still >10,000 servers processing PHP.
● HipHop VM, virtual machine to speed PHP 

execution.
● Roughly 3-5x performance increase.
● Huge cost savings.



  

Example: Music Streaming Site

● 100 machine cluster, ~ 400 CPUs, large application.
● Memcache used to store all the intermediate 

calculations.
● Nobody noticed that with the cache off the front 

page had increased from 0.1s of CPU time to 100s 
per request as memcache hit it.

● One day we flushed the cache in production – 10 
minute outage while it rebuilt all the intermediate 
objects.



  

Raspberry Pi

● The original aim was to produce 10k tiny 
computers.

● Run linux, designed to be programmable by 
computer science students, the first wave of 
which are sat in this lecture theatre.

● Severely budget & time constrained.



  

Raspberry Pi v1

● Launch of the original Raspberry Pi.
● Volunteer project, minimal funding – hosting 

budget £4/month.
● Aim: direct 10,000 or more people to RS 

components and Farnell who were selling 
Raspberry Pi.

● Wordpress based dynamic site, blog + 
comments + forums.



  

Raspberry Pi v1

● Replaced site with a static webpage
● Performance improved from ~5 pages/second to 

1000+
● Sent >100,000 visitors to the vendors

– Who fell over – linked to their search pages which were 
dynamic and not cacheable.

– 1s+ of CPU time per visitor on their sites.

– 'Bulletproof' major e-commerce websites overwhelmed.

– Bottleneck was belief.



  

Raspberry Pi v1

● Human resource limits:
– Not enough staff (1 part time) to answer queries.

– Not enough stock to make the products.

● Post launch the website traffic never returned 
low enough to turn the existing site back on.
– Vertical scale – move from shared hosting account 

to big dedicated server (4 cores / 96GB RAM) 
(2012 – this was a huge machine).



  

Raspberry Pi. DDOS

● Flooded with tcp connection opens.
● Syncookies means CPU but no RAM until 

connection open.
● Ran out of CPU to process syn packets.
● Ran out of network capacity to receive syn 

packets (500k/sec, > 1Gbps).
● Front with 4x1Gbps dual core machines just for 

MD5 sum calculations.



  

Raspberry Pi: Downloads

● Donated a downloads server with a 100Mbps 
unlimited use network port.

● Images are ~ 1GB in size, 100Mbps means 
1m40 to deliver an image ~ 800 per day.

● Filled immediately, built a mirror network from 
donated servers and bandwidth.



  

Raspberry Pi Downloads

● 1Gbps means we can serve an image 
download every 8s per 1Gbps network port.

● Scale horizontally, add little servers that deliver 
1Gbps each – handily on the DDOS servers.

● Can deliver an image every second – 80000+ 
per day without the CDN.

● Raspberry Pi uses more bandwidth than the 
University of Cambridge.



  

Wordpress

● Wordpress is a PHP application.
● Naive configuration under apache/nginx runs a 

php interpreter for every page request and 
compiles and executes 400k lines of PHP on 
every request.

● Dynamic language – interpreted on every request.
● Many CPU cycles spent compiling PHP on every 

request.



  

PHP caching

● Advanced PHP Cache, compile once, store 
intermediate object code.

● Only recompile when the source files change.
● Improves Wordpress performance by up to 

50%.



  

Wordpress Caching

● Wordpress generates semi-static pages :
– Only change when user content is added.

– Supercache stores the generated HTML and outputs that 
unless the content has changed.

– To avoid recompiling the whole of wordpress on every 
request, if a cached page exist it just compiles a shim to 
output a static file.

– Dynamically changes the code to compile based on the 
data in the request.

– If APC caches the object code...



  

Raspberry Pi. Performance

● Types of request:
– Dynamically generated page (0.5s CPU, 8/second) 

~ 10%.

– Wordpress cached page (0.01s CPU, 400/second) 
~ 90%.

– Error page served from the load balancers 
(0.0001s, 40k/second) ~0%.



  

Raspberry Pi 2

● Launch of Raspberry Pi 2.
● Simultaneous press launch at 9am, radio, TV, 

multiple internet sites.
● Expecting 1m + visitors ~ 20 per second.
● Expecting a high cache hit ratio.
● In the event the site is overwhelmed we set the 

error page to the announcement – repeat of Pi 1 
launch.



  

Raspberry Pi 2: Mistakes

● Super top secret – I didn't know about the 
launch.

● Instead of monitoring and managing the site, I 
was without internet access on this beach.



  

Raspberry Pi 2

● Any logged in user doesn't get a cached page
– Because of our comments plugin this includes 

anyone who's ever posted a comment in the past.

– Cache hit rate much lower than expected.

● On posting of a comment the cache is 
invalidated.



  

Raspberry Pi 2: Cache invalidation

● Wordpress / Apache don't queue requests, they 
process them all in parallel.

● Lack of a cached page means that every process 
starts generating replacement pages at the same time.

● If number of requests > number of cores, each 
additional request slows down the currently processing 
ones.

● If the request rate is high enough, a page generation 
will never complete.



  

Raspberry Pi 2: Cache invalidation

● Eventually the load balancers decide the site has failed and 
serve the error page.

● Load subsides and the cached page is created.
● Traffic is directed back and the site works again.
● Until the next comment is posted.
● We run into performance issues at 2000 simultaneous visitors, 

peak about 4500 ~ 10 million visitors on launch day.
● Not a disaster, but not really a success either.
● Exercise: write some code to simulate just how bad this is, 

asymptotic to a maximum performance level.



  

PiZero

● Site architecture change
– Lots of VMs for each part of the site.

– Key parts all load balanced over multiple VMs.

– Easy to add VMs – scale all the PHP processing 
horizontally.

– Split the databases into separate VMs – shard the 
data stores.

– Scale the database servers vertically and offload 
with caching.



  

PiZero

● Multiple Webserver VMs should solve the 
comment posting problem
– While one VM is under heavy CPU load the load 

will be transferred to the other VMs.

– Providing they don't all invalidate simultaneously.

– Not prepared to put this to chance.

– We know, that our test setup isn't good enough to 
catch the comment posting issues we had last time.



  

PiZero

● Additional static caching
– Pre-render the most popular pages on the site and 

always serve static HTML.

– Might be up to 60s out of date, but always fast.

– Could achieve with Varnish (see earlier slides), 
possibly in a more clever way.

– Simple configuration reduces the chance of 
something going wrong.



  

PiZero

● Over 10000 simultaneous viewers at peak.
● ~ 75 million page views in a day.
● We probably could have handled 20k-50k,  

network limitations in the host (4Gbps) was the 
next obvious bottleneck.
– We don't know where the next non-obvious 

bottleneck is!



  

PiZero: Magpi

● PiZero was launched on the front of the MagPi 
magazine
– MagPi website sees a huge influx of traffic.

– Designed by the 'techie genius' of the design agency.

– Delivered late – night before – no significant testing.

– Page generation time ~ 0.2s => 10,000 visitors/second 
=> 2000 cores.

– Live patch the configuration/code to reduce CPU load.



  

PiZero: Magpi

● Wordpress cache, set to maximum caching.
● Deploy static page generation for the most popular 

pages.
● Called Google+ 8 times per page request to get  

number of shares – deleted functionality.
● Dynamic elements of pages and menus – all forced 

static on a 60s refresh.
● Ideally done in Varnish but Keep It Simple Stupid 

(KISS) applies – minimal changes to production.



  

Scaling: The End.

● Questions?
● Further questions, pete@ex-parrot.com
● https://twitter.com/Mythic_Beasts
● https://twitter.com/Raspberry_Pi

mailto:pete@ex-parrot.com
https://twitter.com/Mythic_Beasts
https://twitter.com/Raspberry_Pi
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