
Axiom of choice

Every surjection has a section.
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Functional Inverse Images





Injections

Definition 145 A function f : A → B is said to be injective, or an

injection, and indicated f : A ֌ B whenever

∀a1, a2 ∈ A.
�

f(a1) = f(a2)
�

=⇒ a1 = a2 .
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Theorem 146 The identity function is an injection, and the compo-

sition of injections yields an injection.

The set of injections from A to B is denoted

Inj(A,B)

and we thus have

Sur(A,B)⊆

Bij(A,B)
⊆
⊆ Fun(A,B) ⊆ PFun(A,B) ⊆ Rel(A,B)

Inj(A,B)
⊆

with

Bij(A,B) = Sur(A,B) ∩ Inj(A,B) .
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Proposition 147 For all finite sets A and B,

#Inj(A,B) =






�

#B
#A

�

· (#A)! , if #A ≤ #B

0 , otherwise

PROOF IDEA:
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Functional Direct Images



Replacement axiom

The direct image of every definable functional property

on a set is a set.
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Set-indexed constructions

For every mapping associating a set Ai to each element of a set I,

we have the set

�

i∈I Ai =
�

�
Ai | i ∈ I

	
=

�
a | ∃ i ∈ I. a ∈ Ai

	
.

Examples:

1. Indexed disjoint unions:
�

i∈I Ai =
�

i∈I {i}×Ai

2. Finite sequences on a set A:

A∗ =
�

n∈NA
n
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Proposition 153 An enumerable indexed disjoint union of

enumerable sets is enumerable.

PROOF:

Corollary 155 If X and A are countable sets then so are A∗,

Pfin(A), and (X⇀⇀finA).
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Unbounded cardinality

Theorem 156 (Cantor’s diagonalisation argument) For every

set A, no surjection from A to P(A) exists.

PROOF:
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Corollary 159 The sets

P(N) ∼=
�

N ⇒ [2]
�

∼= [0, 1] ∼= R

are not enumerable.

Corollary 160 There are non-computable infinite sequences of

bits.
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Foundation axiom

The membership relation is well-founded.

Thereby, providing a

Principle of ∈-Induction .
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