Calculus of bijections

- $A \cong A, A \cong B \Longrightarrow B \cong A,(A \cong B \wedge B \cong C) \Longrightarrow A \cong C$
- If $A \cong X$ and $B \cong Y$ then

$$
\begin{gathered}
\mathcal{P}(A) \cong \mathcal{P}(X) \quad, \quad A \times B \cong X \times Y, \quad A \uplus B \cong X \uplus Y \\
\operatorname{Rel}(A, B) \cong \operatorname{Rel}(X, Y) \quad, \quad(A \Rightarrow B) \cong(X \Longrightarrow Y), \\
(A \Rightarrow B) \cong(X \Rightarrow Y), \quad \operatorname{Bij}(A, B) \cong \operatorname{Bij}(X, Y)
\end{gathered}
$$

- $A \cong[1] \times A,(A \times B) \times C \cong A \times(B \times C), A \times B \cong B \times A$
- $[0] \uplus A \cong A, \quad(A \uplus B) \uplus C \cong A \uplus(B \uplus C), A \uplus B \cong B \uplus A$
- $[0] \times A \cong[0],(A \uplus B) \times C \cong(A \times C) \uplus(B \times C)$
- $(A \Rightarrow[1]) \cong[1],(A \Rightarrow(B \times C)) \cong(A \Rightarrow B) \times(A \Rightarrow C)$
- $([0] \Rightarrow A) \cong[1],((A \uplus B) \Rightarrow C) \cong(A \Rightarrow C) \times(B \Rightarrow C)$
- $([1] \Rightarrow A) \cong A,((A \times B) \Rightarrow C) \cong(A \Rightarrow(B \Rightarrow C))$
- $(A \Rightarrow B) \cong(A \Rightarrow(B \uplus[1]))$
- $\mathcal{P}(A) \cong(A \Rightarrow[2])$

$$
c^{a \cdot b}=\left(c^{a}\right)^{b}
$$

$(b \cdot c)^{a}=b^{a} \cdot c^{a}$ $c^{a^{+b}}=c^{a} \cdot c^{b}$
currying

$$
(\alpha * \beta \rightarrow \gamma) \curvearrowright(\alpha \rightarrow \beta \rightarrow \gamma)
$$

uncurryong.
fun currying $(f: \alpha * \beta \rightarrow x)(x: \alpha)(y ; \beta)$

$$
=f(x, y)
$$

fun umcurring $(g: \alpha \rightarrow \beta \rightarrow \gamma)((x, y): \alpha * \beta)$

$$
=g x y
$$

Characteristic (or indicator) functions

$$
\begin{aligned}
& \mathcal{P}(A) \cong(A \Rightarrow[2]) \quad[2]=\{0,1\} \\
& S \in P(A) \mapsto \mathcal{X}_{S}: A \rightarrow\{0,1\} \\
& \hat{f} \in P(A) \longleftarrow f: A \rightarrow\{0,1\}
\end{aligned}
$$

$\forall a \in A$.

$$
\begin{aligned}
& \chi_{S}(a)=\operatorname{de} \begin{cases}0 & a \notin S \\
1 & a \in S\end{cases} \\
& \begin{array}{l}
\hat{f}=\{a \in A \mid f(a)=1\} \in P(A)
\end{array} \\
& \text { èpercox } \forall S \in B(A) \text {. } \widehat{x_{s}}=S \\
& \forall f \in(A \Rightarrow[2]) . \chi_{-385} \underline{f}=f
\end{aligned}
$$

$$
\begin{array}{llll}
& A=\left\{a_{1}, \ldots, a_{n}\right\} & A A=n \\
& S \subseteq A \quad S=\left\{a_{1}, a_{3}, \ldots a_{2 i n}, \ldots\right\} \\
X_{S} & \\
& a_{1} & \frac{a_{2}}{I} & a_{3} \\
I & a_{4} & a_{5} & \ldots . \\
1 & 0 & 1 & I \\
1 & 1 & \ldots
\end{array}
$$

Finite cardinality

Definition $136 A$ set A is said to be finite whenever $A \cong[n]$ for some $n \in \mathbb{N}$, in which case we write $\# A=n$.

Theorem 137 For all $m, n \in \mathbb{N}$,

1. $\mathcal{P}([n]) \cong\left[2^{n}\right]$
2. $[m] \times[n] \cong[m \cdot n]$
3. $[m] \uplus[n] \cong[m+n]$
4. $([m] D[n]) \cong\left[(n+1)^{m}\right]$
5. $([\mathrm{m}] \Rightarrow[\mathrm{n}]) \cong\left[\mathrm{n}^{\mathrm{m}}\right]$
6. $\operatorname{Bij}([n],[n]) \cong[n!]$

Infinity axiom

There is an infinite set, containing \emptyset and closed under successor.
duf iffoul $\exists g: B \rightarrow A$. gof $=i d_{A} \wedge f \circ g=i d_{B}$
Bijections
Proposition 138 For a function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, the following are equivalent.
(1.) f is bijective. namely, $f^{-1}(a)$
2. $\forall b \in B . \exists!a \in A . f(a)=b$.

3. $(\forall b \in B . \exists a \in A . f(a)=b)$
f^{-1}
$\left(\forall a_{1}, a_{2} \in A . f\left(a_{1}\right)=f\left(a_{2}\right) \Longrightarrow a_{1}=a_{2}\right)$
ingection.

Definition 139 A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be surjective, or a surjection, and indicated $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ whenever

$$
\forall b \in B . \exists a \in A . f(a)=b
$$

Theorem 140 The identity function is a surjection, and the composition of surjection yields a surjection. Let $c \in C$. goo

Find a. A sit.
The set of surjection s from A to B is denoted

$$
\begin{aligned}
& \quad(g \circ f)(a)=c \\
& \exists b \in B \cdot g(b)=c \\
& \text { Let } b_{0} \in B \cdot g(b)=c
\end{aligned}
$$

and we thus have

$$
\begin{aligned}
\operatorname{Sur}(A, B) g \text { surg } \Rightarrow & \mathcal{F} \in B \cdot g(b)=c \\
& \text { Let } b_{0} \in B \cdot g(b)=c
\end{aligned}
$$

$$
\begin{array}{rlr}
\operatorname{Bij}(A, B) \subseteq \operatorname{Sur}(A, B) \subseteq \operatorname{Fun}(A, B) \subseteq & \quad \operatorname{PFun}(A, B) \subseteq \operatorname{Rel}(A, B) \\
\text { Then }(g \circ f)\left(a_{0}\right)= & g\left(f\left(a_{0}\right)\right) \quad \text { surg } \Rightarrow \exists a \in A \cdot f(a)=b_{0} \\
& =g\left(b_{0}\right)=c \quad \text { Let } a_{0} \in A \cdot f\left(a_{0}\right)=b_{0} \\
& -393-
\end{array}
$$

Enumerability
Definition 142

1. A set A is said to be enumerable whenever there exists a surjection $\mathbb{N} \vec{e} A$, referred to as an enumeration.
2. A countable set is one that is either empty or enumerable.
dded

$$
\begin{aligned}
& \geq e(0), e(1), e(2), \ldots, e(n), \ldots\}=A . \\
& \{e(n) \mid n \in \mathbb{N}\}=A
\end{aligned}
$$

Examples:

1. A bijective enumeration of \mathbb{Z}.

$$
\begin{array}{c|c|c|c|c|c|c|c|c}
\cdots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & \cdots \\
\hline \hline & \cdots & 3 & 1 & 0 & 2 & 4 & \cdots & -
\end{array}
$$

$$
n=2^{x} \cdot 3^{3^{\square}} \delta^{\square} \cdots P_{k}^{\square}
$$

2. A bijective enumeration of $\mathbb{N} \times \mathbb{N}$ Fad: for all $n \in \mathbb{N}^{+}$

$$
\begin{aligned}
& f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}^{+} \\
& f(x, y)=2^{x}(2 y+1) \\
& \text { is bjective } \\
& \exists!x, y \in \mathbb{N} . \\
& n=2^{x} \cdot(2 y+1) \\
& g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \\
& g(x, y)=2^{x}(2 y+1)-1 \text { is bijective. }
\end{aligned}
$$

$f_{\Delta \in S}$
Proposition 143 Every nonempty subset of an enumerable set is enumerable.
Proof: Let A be enumerable; so let $e: a(\rightarrow A$ be an enumeration.
Let $\phi \neq S \& A$. Claim: Sis enumerable.
RIP: $\because f: N \rightarrow S$
$\forall n \in \mathbb{N}$

Countability

Proposition 144

1. $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countable sets.
2. The product and disjoint union of countable sets is countable.
3. Every finite set is countable.
4. Every subset of a countable set is countable.
