Bijection
= reversible functions
$A \xrightarrow{f} B$ is a bjection.
if up $\exists \cdot g: B \rightarrow A$ a function
st.

$$
g \circ f=d_{A}(\forall a \in A . g(f(a))=a)
$$

end

$$
f \circ g=r_{B} \quad(\forall b \in B \cdot f(g(b))=b)
$$

NB: If ouch a $g$ exists then it is unique depending on $f$ and we Typically de note it $f^{-4}$

Given $f: A \rightarrow B$ suppose $g, h: B \rightarrow A$ s.t.2d. $f \circ g=f \circ h=T_{B}$

$$
g \circ f=h \circ f=\sim d_{A}
$$

RIP: $g=h$
Thea.

$$
\begin{aligned}
& f \circ g=f \circ h \Rightarrow h \circ f \circ g=h \circ f \circ h \\
& \begin{array}{cc}
r_{A \rho g}^{l l} & " \text { hoo } R_{B} \\
\| & \| \\
g & h
\end{array}
\end{aligned}
$$

## Bijections

Definition 127 A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be bijective, or a bijection, whenever there exists a (necessarily unique) function $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{A}$ (referred to as the inverse of f) such that

1. $g$ is a retraction (or left inverse) for $f$ :

$$
\mathrm{g} \circ \mathrm{f}=\mathrm{id}_{\mathrm{A}},
$$

2. $g$ is a section (or right inverse) for $f$ :

$$
\mathrm{f} \circ \mathrm{~g}=\mathrm{id}_{\mathrm{B}} .
$$

$$
A=\left\{a_{1}, a_{2}, a_{3}\right\} \quad B=\left\{b_{1}, b_{2}\right\}
$$

$A \xrightarrow{f} B \quad$ bjection.

$a_{2} \mapsto b_{1}$
$a_{3} \mapsto$ ?


$$
\begin{aligned}
& B \xrightarrow{g} A \\
& b_{1} \longmapsto a_{2} \\
& b_{2} \longmapsto a_{1}
\end{aligned}
$$

Proposition 129 For all finite sets $A$ and $B$,

$$
\# \operatorname{Bij}(A, B)= \begin{cases}0 & , \text { if } \# A \neq \# B \\ n! & , \text { if } \# A=\# B=n\end{cases}
$$

Proof idea:

$$
A=\left\{a_{11}, a_{n}\right\} \quad B=\left\{b_{4}, \ldots, b_{n}\right\}
$$



Theorem 130 The identity function is a bijection, and the compositimon of bijections yields a bijection.

$$
\begin{aligned}
A \underset{b_{i} j}{f} B \underset{\text { big }}{\rightarrow} C \Rightarrow & g \circ f: A \rightarrow C \\
\text { By } & =C \\
& (g \circ f)^{-1}=f^{-1} \circ g^{-1}
\end{aligned}
$$

Definition 131 Two sets $A$ and $B$ are said to be isomorphic (and to have the same cardinatity) whenever there is a bijection between them; in which case we write

$$
A \cong B \quad \text { or } \quad \# A=\# B
$$

## Examples:

1. $\{0,1\} \cong\{$ false, true $\}$.


- $\mathbb{N}=\mathbb{N}^{+}=\{n \in \mathbb{N} \mid n>0\}$

- $\begin{gathered}a \cong \mathbb{N} \\ g\end{gathered}$

$$
\begin{aligned}
& f(n)=\left\{\begin{array}{l}
n / 2 \quad n \text { even } \\
-(n+1 / 2) n \text { odd }
\end{array}\right.
\end{aligned}
$$

- $\mathbb{N} \cong \mathbb{N} \times \mathbb{N}$


Equivalence relations and set partitions

- Equivalence relations.


Set partitions.
Part (A) The set of sell partitions of $A$.



- Define f:

Giver an ar bitrory equiv. rel $R$ inA we dele. $\pi(R) \subseteq P(A)$ and show it is a petition.

$$
\pi(R)=\left\{[a]_{R} \subseteq A \mid a \in A\right\}
$$

Exercise.
Haaf the equivalence char of $a \in A$.
$\{x \in A \mid x \in a\}$
NB $Q \in[a]_{R}$

- Define $g$ :

Giver an arbitrary partition $\pi$ of $A$ defoe eq( $(\pi) \subseteq A \times A$ sit. it in an eq. rel.

$$
\left(a, a^{\prime}\right) \in \operatorname{eq}(\pi) \stackrel{\text { def }}{\Rightarrow} \exists b \in \pi \quad a \in b \wedge a^{\prime} \in b
$$

Exercise: $\forall R \in E q(R) \quad g(f(R))=R$

$$
\forall \pi \in \operatorname{Pant}(A) \quad f(g(\pi))=\pi
$$

Theorem 134 For every set $A$,
$\operatorname{EqRel}(A) \cong \operatorname{Part}(A) \quad$.
Proof:

