## Relations and matrices

## **Definition 103**

1. For positive integers m and n, an  $(m \times n)$ -matrix M over a semiring  $(S, 0, \oplus, 1, \odot)$  is given by entries  $M_{i,j} \in S$  for all  $0 \leq i < m$  and  $0 \leq j < n$ . M (m×n)-məttix, N (n×l)-metrix (Mij) osixm osjan (Njik) osjan oskal (N\*M)(mx.l)-matrix $(N*M)_{i,k} = \bigoplus_{j=0}^{n-1} M_{i,j} \otimes N_{j,k}$  $0 \le i \le m$  $0 \le k \le l$ **Theorem 104** Matrix multiplication is associative and has the

identity matrix as neutral element.

$$R \subseteq \{0, 1, \dots, m-l\} \times \{0, 1, \dots, n-l\}$$
Relations from [m] to [n] and (m × n)-matrices over Booleans  
provide two alternative views of the same structure.  
This carries over to identities and to composition/multiplication.  

$$(M \star m)_{i,R} = \bigvee_{j=0}^{n-1} (M_{i,j} \times N_{jk}) \qquad \qquad B = \{ \text{fue}, \text{folse.}\}$$

$$B = \{ \text{fue}, \text{folse.}\}$$

$$B = \{ \text{fue}, \text{folse.}\}$$

$$B = v$$

$$0 = n$$
Given  $R \subseteq (m) \times [n]$ 

$$M \neq m = t(R) \quad (m \times n) - m = trice$$

$$(m \to t(R))_{i,j} = \begin{cases} \text{fue}, \text{folse.} \\ \text{folse.} \end{cases}$$

-344 ---

Given M(mxn)-mstrz  $M_{rel}(M) \subseteq [m] \times [n]$ tie-[m], j e-[n]. (i,j) E rel(M) iffal Mijj=true Chim  $C(m) \times (n)$   $R \longrightarrow met(R) \longrightarrow rel(met(R)) = R$   $(m \times n) - n \times t$   $M \longrightarrow rel(M) \longrightarrow met(rel(M)) = M$   $m \times t(rel(M))_{ij} = true(\Rightarrow)(ij) \in rel(M) \Leftrightarrow Mij - true$ Claim  $C(m) \times (n)$ 

 $R \subseteq [m] \times [n]$   $S \subseteq [n] \times [l]$ SOR S[m]×[2] mat (R) (mxn)-mat. met (S) (nxl)-met mat(s) \* mat(R) || claim mot (SoR)

## Directed graphs

**Definition 108** A directed graph (A, R) consists of a set A and a relation R on A (i.e. a relation from A to A).



**Corollary 110** For every set A, the structure

$$\operatorname{Rel}(A)$$
,  $\operatorname{id}_A$ ,  $\circ$ )  $A$   
 $\zeta$   
 $\zeta$   
 $\zeta$   
 $\zeta$ 

is a monoid.

**Definition 111** For  $R \in \text{Rel}(A)$  and  $n \in \mathbb{N}$ , we let

$$R^{\circ n} = \underbrace{R \circ \cdots \circ R}_{n \text{ times}} \in \operatorname{Rel}(A)$$

be defined as  $id_A$  for n = 0, and as  $R \circ R^{\circ m}$  for n = m + 1.



**Proposition 113** Let (A, R) be a directed graph. For all  $n \in \mathbb{N}$  and  $s, t \in A$ ,  $s R^{on} t$  iff there exists a path of length n in R with source s and target t.

PROOF: By induction on new. Bare: Cons s R° t (=) Fapolh of length o from s to t. I. ? I. ? ∀s.t. SRon t∈) I path of lengthin from stot. As suml RTF: Fe, t SROCH) t (=) ) path of length (n+1) for state. 350

s Rohn) t est s (Ro Ron) t E) Ju. sRunnRont by TH => I u. s.R.u. n I path of length n from uto t E) I path of length (not) from stot.

Nothin USAiliEI3 = Uict Ai

**Definition 114** For  $R \in Rel(A)$ , let

$$\mathbb{R}^{\circ*} = \bigcup \left\{ \mathbb{R}^{\circ n} \in \operatorname{Rel}(\mathbb{A}) \mid n \in \mathbb{N} \right\} = \bigcup_{n \in \mathbb{N}} \mathbb{R}^{\circ n}$$

**Corollary 115** Let (A, R) be a directed graph. For all  $s, t \in A$ , s  $R^{\circ*}$  t iff there exists a path with source s and target t in R.

The  $(n \times n)$ -matrix M = mat(R) of a finite directed graph ([n], R) for n a positive integer is called its *adjacency matrix*.

The adjacency matrix  $M^* = mat(R^{\circ*})$  can be computed by matrix multiplication and addition as  $M_n$  where

$$\begin{cases} M_0 &= I_n \\ M_{k+1} &= I_n + (M \cdot M_k) \end{cases}$$

This gives an algorithm for establishing or refuting the existence of paths in finite directed graphs.

## Preorders

**Definition 116** A preorder  $(P, \sqsubseteq)$  consists of a set P and a relation  $\Box$  on P (i.e.  $\Box \in \mathcal{P}(P \times P)$ ) satisfying the following two axioms.



► Transitivity.

 $\forall x, y, z \in \mathsf{P.} \ (x \sqsubseteq y \land y \sqsubseteq z) \implies x \sqsubseteq z$ 

 $(\sqsubseteq \circ \sqsubseteq) \subseteq \sqsubseteq$ 

$$\begin{array}{c} partial rodurg (P, 5) \\ preordur s.t. \\ \end{array}$$

$$\begin{array}{c} \mathbb{E}xamples: \\ & (\mathbb{R}, \leq) \text{ and } (\mathbb{R}, \geq). \\ & (\mathcal{P}(A), \subseteq) \text{ and } (\mathcal{P}(A), \supseteq). \end{array}$$

$$\begin{array}{c} \mathbb{P}(\mathbb{R}, \leq) \\ \mathbb{P}(\mathbb$$

 $\bigcap \mathcal{F}_R$  on the least relation on A That combins Theorem 118 For  $R \subseteq A \times A$ , let R and it is a presider.

 $\mathcal{F}_{R} = \left\{ Q \subseteq A \times A \ | \ R \subseteq Q \land Q \text{ is a preorder} \right\} .$ 

Then, (i)  $\mathbb{R}^{\circ*} \in \mathcal{F}_{\mathbb{R}}$  and (ii)  $\mathbb{R}^{\circ*} \subseteq \bigcap \mathcal{F}_{\mathbb{R}}$ . Hence,  $\mathbb{R}^{\circ*} = \bigcap \mathcal{F}_{\mathbb{R}}$ .

**PROOF:**