Big intersections
Definition 92 Let U be a set. For a collection of sets $\mathcal{F} \subseteq \mathcal{P}(\mathrm{U})$, we let the big intersection (relative to U) be defined as

$$
\cap \mathcal{F}=\{x \in \mathrm{U} \mid \forall \mathcal{A} \in \mathcal{F} \cdot x \in \mathcal{A}\} .
$$

intuitive.
opec

$$
\begin{aligned}
& \mathcal{F}=\{\ldots, A, B, \ldots, X, Y, \ldots\} \\
& \cap \mathcal{F}=(\ldots \cap A \cap B \cap \ldots \cap X \cap Y \cap \ldots)
\end{aligned}
$$

Bet
$\forall A \in F, \cap \mathcal{F} \subseteq A$

$$
x \subseteq \cap F \Leftrightarrow \forall A \in F \cdot x \subseteq A
$$

resh numbers.
Theorem 93

$$
\mathcal{F}=\{S \subseteq \mathbb{R} \mid(0 \in S) \wedge(\forall x \in \mathbb{R} \cdot x \in S \Longrightarrow(x+1) \in S)\}
$$

Then, (i) $\mathbb{N} \in \mathcal{F}$ and (ii) $\mathbb{N} \subseteq \cap \mathcal{F}$. Hence, $\cap \mathcal{F}=\mathbb{N}$.

(iii) $\forall S \in \cdot \mathcal{F}: \mathbb{N} \subseteq S$

$$
\Leftrightarrow \forall S \in \mathcal{F} \cdot \forall x \in \mathbb{N} \cdot x \in S
$$

Proof by miduction on $x \in N$.

Example: Let A, B sets.

$$
\begin{aligned}
& \{A, B\} \\
& \cup\{A, B\}=A \cdot \cup B_{\text {Union }}
\end{aligned}
$$

Every collection of sets has a union.
$\bigcup \mathcal{F}$

$$
x \in \cup \mathcal{F} \Longleftrightarrow \exists X \in \mathcal{F} \cdot x \in X
$$

NB: To consider arbitary big. йtersections one needs to check that the family of set being ütersecuted is non-en.pty.

For nonempty \mathcal{F} we also have
defined by

$$
\forall x . x \in \cap \mathcal{F} \Longleftrightarrow(\forall X \in \mathcal{F} . x \in X)
$$

$$
\begin{aligned}
& \{1\{\times A=\{(1, a) \mid a \in A\} \\
& \{2\} \times B=\{(2, b) \mid b \in B\}
\end{aligned}
$$

Disjoint unions
Definition 94 The disjoint union $A \uplus B$ of two sets A and B is the set

$$
A \uplus B=(\{1\} \times A) \cup(\{2\} \times B)
$$

Thus,

NB: ${ }^{(\alpha, \beta)}$ disunion $=$ one of α

Proposition 96 For all finite sets A and B ,

$$
A \cap B=\emptyset \Longrightarrow \#(A \cup B)=\# A+\# B
$$

Proof idea:

$$
\begin{array}{ll}
\# A=n & A=\left\{a_{1}, \ldots, a_{n}\right\} \\
\# B=m & B=\left\{b_{1} \ldots, b_{m}\right\} \\
A \cup B=\left\{a_{1} \ldots a_{n}, b_{1} \ldots b_{m}\right\} \\
\#(A \cup B)=n+m
\end{array}
$$

Corollary 97 For all finite sets A and B,

$$
\begin{gathered}
\#(A \uplus B)=\# A+\# B . \\
-328-
\end{gathered}
$$

Relations

Definition $99 A$ (binary) relation R from a set A to a set B

$$
R: A \longrightarrow B \quad \text { or } \quad R \in \operatorname{Rel}(A, B)
$$

is

$$
R \subseteq A \times B \quad \text { or } \quad R \in \mathcal{P}(A \times B)
$$

Notation 100 One typically writes $a \operatorname{Rb}$ for $(a, b) \in R$.

Informal examples:

$$
\begin{array}{ll}
& (1+2) \times 3 \rightarrow 3 \times 3 \rightarrow 9 \\
& e \rightarrow p^{\prime}
\end{array}
$$

- Computation.
- Typing.

$$
P: \tau
$$

- Program equivalence. $P \cong c{ }_{c} Q: 乙$
- Networks.
- Databases.

Nation $R: A \rightarrow B \quad a \in A, b \in B$ $(a, b) \in R \sim$ write $a R b$
Examples:

- Empty relation.

$$
\emptyset: A \longrightarrow B
$$

- Full relation.

$$
(A \times B): A \longrightarrow B
$$

- Identity (or equality) relation.

$$
\operatorname{id}_{A}=\{(a, a) \mid a \in A\}: A \longrightarrow A
$$

- Integer square root.

$$
R_{2}=\left\{(\mathfrak{m}, n) \mid m=n^{2}\right\}: \mathbb{N} \longrightarrow \mathbb{Z} \quad\left(m R_{2} n \Longleftrightarrow m=n^{2}\right)
$$

exaple: $4 R_{2} 2,4 R_{2}-2$

Internal diagrams
Example:

$$
\frac{R: A+B \quad S: B \rightarrow C}{\text { SoR:A } \rightarrow C}
$$

by def: $S O R \subseteq A \times C$.

$$
S_{0} R=\{(a, c) \in A \times c \mid \exists b \in B, a R b \wedge b S c\}
$$

$$
\frac{\text { conpostion }}{\sum}
$$

Relational extensionality

$$
R=S: A \longrightarrow B
$$

iff
$\forall a \in A . \forall b \in B . a R b \Longleftrightarrow a S b$

Wlog. one may wite, abusing ustahion, ToSoR

Theorem 102 Relational composition is associative and has the identity relation as neutral element.
(Associativity.
For all $\mathrm{R}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{S}: \mathrm{B} \rightarrow \mathrm{C}$, and $\mathrm{T}: \mathrm{C} \rightarrow \mathrm{D}$,

$$
(T \circ S) \circ R=T \circ(S \circ R)
$$

- Neutral element.

For all $\mathrm{R}: \mathrm{A} \longrightarrow \mathrm{B}$,

$$
R \circ \operatorname{id}_{A}=R=\operatorname{id}_{B} \circ R .
$$

