

Powerset axiom

For any set, there is a set consisting of all its subsets.

 $\mathcal{P}(\mathbf{U})$

 $\forall X. \ X \in \mathcal{P}(U) \iff X \subseteq U \quad .$ If H is finite of cardinality $n \in \mathcal{N}$ then P(H) is finite of cardinality 2^{h} .

The powerset Boolean algebra $(\mathcal{P}(U) , \emptyset, U, \cup, \cap, (\cdot)^{c})$ For all $A, B \in \mathcal{P}(U)$, $A \cup B = \{ x \in U \mid x \in A \lor x \in B \} \in \mathcal{P}(U)$ $A \cap B = \{ x \in U \mid x \in A \land x \in B \} \in \mathcal{P}(U)$

 $A^{c} = \{ x \in U \mid \neg (x \in A) \} \in \mathcal{P}(U)$

Sets and logic

Proposition 85 Let U be a set and let $A, B \in \mathcal{P}(U)$.

- **1.** $\forall X \in \mathcal{P}(\mathcal{U})$. $A \cup B \subseteq X \iff (A \subseteq X \land B \subseteq X)$.
- **2.** $\forall X \in \mathcal{P}(U)$. $X \subseteq A \cap B \iff (X \subseteq A \land X \subseteq B)$.

PROOF: (1) X S. N. ar bitrary. (=) Assume AVB S.X RTP: ASX and BSX $(ii) B \subseteq X$ (i) A-E-X analo pry Gnu X-SAUB emma A-E-AVB did BEX BCAUR The ASX. - 301 —

A,BSU.

(E) Assume ASX and BSX RTP: AUBEX E) Vx. XEAUB = XEX. Let x be orbitrary such That zEAUB RTP:25X. Oan xEA: Then, since ASX v XEA XEX, and we are done. XEB and x 6 B: maloopus/

PROOF PRINCIPLE FOR UNIDERS and INTERSECTORY Corollary 86 Let U be a set and let $A, B, C \in \mathcal{P}(U)$.

```
1.
     C = A \cup B
       iff
                      |A \subseteq C \land B \subseteq C|
                 \wedge
                      [\forall X \in \mathcal{P}(U). (A \subseteq X \land B \subseteq X) \implies C \subseteq X]
2.
               C = A \cap B
       iff
                      [C \subseteq A \land C \subseteq B]
                 \wedge
                      [\forall X \in \mathcal{P}(U). (X \subseteq A \land X \subseteq B) \implies X \subseteq C]
```

Pairing axiom

For every a and b, there is a set with a and b as its only elements.

 ${a, b}$

defined by

$$\forall x. x \in \{a, b\} \iff (x = a \lor x = b)$$

NB The set {a, a} is abbreviated as {a}, and referred to as a <u>singleton</u>. $\forall x \cdot x \in \{a_1a\} \Leftrightarrow (x=a) \lor (x=a) \Leftrightarrow (x=a)$

NB: #Ø=0

Examples:

- $\blacktriangleright \#\{\emptyset\} = 1$
- $\#\{\{\emptyset\}\} = 1$
- ▶ #{ \emptyset , { \emptyset } } = 2

Ordered pairing

For every pair a and b, the set

```
\left\{ \left\{ a \right\}, \left\{ a, b \right\} \right\}\left| \left| \left| \left\langle a, b \right\rangle \right\rangle \right|
```

is abbreviated as

and referred to as an ordered pair.

Proposition 87 (Fundamental property of ordered pairing) For all a, b, x, y,

 $\langle a,b\rangle = \langle x,y\rangle \iff (a = x \land b = y)$. PROOF: Let a, b, rey be arbibrary. (Z=) E284 (=)) Assume $\{\{a, 2, \{a, 5\}\}\} = \{\{x\}, \{x, y\}\}\}$ <u>RTP</u>: a = x and b = yCose $a = 5: \langle a, 5 \rangle = \{\{a, 3\}\}\} = \{\{x\}, \{x, y\}\}\}$ Con $a \neq b$: Experision. $a = [x] / \forall [a] = [a, g]$ $a = x / y^{2}a$ -310 -

Products

Cartesian plane. RXR

The product $A \times B$ of two sets A and B is the set

 $A \times B = \{ x \mid \exists a \in A, b \in B. x = (a, b) \}$ $= \{(a,b) \mid a \in A \land b \in B^{2}\}$ where

> $\forall a_1, a_2 \in A, b_1, b_2 \in B.$ $(a_1, b_1) = (a_2, b_2) \iff (a_1 = a_2 \land b_1 = b_2)$

Thus,

 $\forall x \in A \times B. \exists! a \in A. \exists! b \in B. x = (a, b)$.

A= { 0, 1, 2.3 $B = \{a, b\}$ $A \times B = \{ (0, a), (0, 5), (1, a), (1, b), (2, a), (2, 5) \}$

#A=3 #(AxB) = 6 = #A.#B #B=2

Proposition 89 For all finite sets A and B,

 $\#(\mathbf{A}\times\mathbf{B}) = \#\mathbf{A}\cdot\#\mathbf{B} \quad .$

$$F_{2} = \{A, B\} \qquad A, B \leq \mathcal{U}$$

$$U = A \cup B$$

$$F_{3} = \{A, B, C\} \qquad A \cap B \cap C \leq \mathcal{U}$$

$$U = \{A, B, C\} \qquad A \cap B \cap C \leq \mathcal{U}$$

$$U = \{A, B, C\} \qquad F_{1} = \{A\}$$

$$U = \{A\} \qquad U = \{A\}$$

$$U = \{A\} \qquad U = \{A\}$$

gren FEP(PU) $F \subseteq P(u)$ define UFEP(U) UFSU SXEU JAGF. XEAZ $U \{ X, Y \} = \{ x \in U \mid J A \in \{ X, Y \} . x \in A \}$ $= \{x \in U \mid x \in X \land x \in Y\} = X \cup Y$

Big unions

Definition 90 Let U be a set. For a collection of sets $\mathcal{F} \in \mathcal{P}(\mathcal{P}(U))$, we let the big union (relative to U) be defined as

 $\bigcup \mathcal{F} = \{ x \in U \mid \exists A \in \mathcal{F}. x \in A \} \in \mathcal{P}(U) .$