$$
X \subseteq U \Leftrightarrow \forall x \cdot x \in X \Rightarrow x \in U
$$

$$
\}
$$

$$
\forall \mathrm{X} . \mathrm{X} \in \mathcal{P}(\mathrm{U}) \Longleftrightarrow \mathrm{X} \subseteq \mathrm{U}
$$

If u in finite of cardinality $n \in \mathbb{N}$ then $P(\underline{U})$ in fine of cardinality 2^{n}.

The powerset Boolean algebra

$$
\left(\mathcal{P}(\mathrm{U}), \quad \emptyset, \mathrm{U}, \cup, \quad \cup, \quad(\cdot)^{\mathrm{c}}\right)
$$

For all $A, B \in \mathcal{P}(\mathrm{U})$,

$$
\begin{aligned}
A \cup B & =\{x \in U \mid x \in A \vee x \in B\} & \in \mathcal{P}(U) \\
A \cap B & =\{x \in U \mid x \in A \wedge x \in B\} & \in \mathcal{P}(U) \\
A^{c} & =\{x \in U \mid \neg(x \in A)\} & \in \mathcal{P}(U)
\end{aligned}
$$

Sets and logic

$\mathcal{P}(\mathrm{U})$	$\{$ false, true $\}$
\emptyset	false
U	true
\cup	\vee
\cap	\wedge
$(\cdot)^{\mathrm{c}}$	$\neg(\cdot)$

Proposition 85 Let U be a set and let $A, B \in \mathcal{P}(U)$.

1. $\forall X \in \mathcal{P}(\mathrm{U}) . A \cup B \subseteq X \Longleftrightarrow(A \subseteq X \wedge B \subseteq X)$.
2. $\forall X \in \mathcal{P}(U) . X \subseteq A \cap B \Longleftrightarrow(X \subseteq A \wedge X \subseteq B)$.

Proof:
(1) $x \subseteq u$ arbitrary.
\Leftrightarrow Assume $A \cup B \subseteq X$
RIP: $A \subseteq X$ and $B C X$
(i) $A \cdot \varepsilon X$
(ii) $B C x$
$\sin \operatorname{Sen}_{x \in A \cup B}$
ardebs X
anoloppas
$\frac{\text { Lemma }}{A \in A \cup B}$
$B \subset A U B$
(ङ) Assume $A \subseteq X$ and $B \subseteq X$
$R T P: A \cup B \subseteq X$

$$
\Leftrightarrow \forall x . x \in A \cup B \Rightarrow x \in X .
$$

Let x be arbitrary such that $x \in A \cup B$
RIP: $x \in X$.
Care $x \in A$: Then, since $A S X$ $x \in X$, and we are done.

$\times |$| \mathbb{R} |
| :--- |
| $v \in A$ |
| |
| $x \in B$ |

Ore $x \in B=$
andogus/

PRoof PRincirle for UNions and Intersections

 Corollary 86 Let U be a set and let $\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathcal{P}(\mathrm{U})$.1. $C=A \cup B$
iff

$$
\begin{aligned}
& {[A \subseteq C \wedge B \subseteq C]} \\
& {[\forall X \in \mathcal{P}(U) \cdot(A \subseteq X \wedge B \subseteq X) \Longrightarrow C \subseteq X]}
\end{aligned}
$$

2. $C=A \cap B$
iff

$$
[C \subseteq A \wedge C \subseteq B]
$$

$$
[\forall X \in \mathcal{P}(\mathrm{U}) .(X \subseteq A \wedge X \subseteq B) \Longrightarrow X \subseteq C]
$$

Pairing axiom

For every a and b, there is a set with a and b as its only elements.

$$
\{a, b\}
$$

defined by

$$
\forall x . x \in\{a, b\} \Longleftrightarrow(x=a \vee x=b)
$$

NB The set $\{a, a\}$ is abbreviated as $\{a\}$, and referred to as a singleton.
$\forall x, x \in\{a, a\} \Leftrightarrow(x=a) \vee(x=a) \Leftrightarrow(x=a)$

NB: $\# \phi=0$

Examples:

- $\#\{\emptyset\}=1$
- $\#\{\{\emptyset\}\}=1$
- $\#\{\emptyset,\{\emptyset\}\}=2$

$$
\langle b, a\rangle=\{\{b\},\{a, b\}\}
$$

Ordered pairing

For every pair a and b, the set

$$
\{\{a\},\{a, b\}\}
$$

is abbreviated as

$$
\|\left.\right|_{\langle a, b\rangle}
$$

and referred to as an ordered pair.

Proposition 87 (Fundamental property of ordered pairing)
For all a, b, x, y,

$$
\langle a, b\rangle=\langle x, y\rangle \Longleftrightarrow(a=x \wedge b=y)
$$

Proof: Let a, b, x, y be arbitrary.
(F) Easy.
(\Rightarrow) Assume $\{\{a,\{,\{a, b\}\}=\{\{x\},\{x, y\}\}$
RIP: $a=x$ and $b=y$.
Case $a=b:\langle a, b\rangle=\{\{a\}\}=\{\{x\},\{x, y\}\}$

$-310-$

The product $A \times B$ of two sets A and B is the set
where

$$
\begin{aligned}
A \times B & =\{x \mid \exists a \in A, b \in B \cdot x=(a, b)\} \\
& =\{(a, b) \mid a \in A \wedge b \in B\}
\end{aligned}
$$

$\forall a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$.

$$
\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right) \Longleftrightarrow\left(a_{1}=a_{2} \wedge b_{1}=b_{2}\right)
$$

Thus,

$$
\forall x \in A \times B . \exists!a \in A . \exists!b \in B . x=(a, b) .
$$

$$
\begin{aligned}
& A=\{0,1,2\} \quad B=\{a, b\} \\
& A \times B=\{(0, a),(0, b),(1, a),(1, b),(2, a),(2, b)\} \\
& \# A=3 \\
& \# B=2 \quad \#(A \times B)=6=\# A \cdot H B
\end{aligned}
$$

Proposition 89 For all finite sets A and B ,

$$
\#(A \times B)=\# A \cdot \# B
$$

Proof idea:

$$
\begin{array}{ll}
\# A=n & A=\left\{a_{1}, \ldots, a_{n}\right\} \\
\# B=m & B=\left\{b_{1}, \ldots b_{m}\right\}
\end{array}
$$

$$
\begin{array}{ll}
F_{2}=\{A, B\} & A, B \subseteq U \\
\cup F_{2}=A \cup B & \\
F_{3}=\{A, B, C\} & A B, C \subseteq U \\
\cup F_{3}=A \cup B \cup C & \\
F_{0}=\{ \} & F_{2}=\{A\} \\
\cup F_{0}=\{.\} & \cup F_{1}=A
\end{array}
$$

grin.

$$
\begin{aligned}
& \text { given } F \in P(P u) \quad F \subseteq P(u) \\
& \text { define } U F \in P(u) \quad U F \subseteq U \\
& H \\
& \{x \in U \mid \exists A \in F, x \in A\} \\
& U\{X, Y\}=\{x \in U \mid \exists A \in\{X, Y\} \quad x \in A\} \\
& \\
& =\{x \in U \mid x \in X V x \in Y\}=X \cup Y
\end{aligned}
$$

Big unions

Definition 90 Let U be a set. For a collection of sets $\mathcal{F} \in \mathcal{P}(\mathcal{P}(\mathrm{U}))$, we let the big union (relative to U) be defined as

$$
\bigcup \mathcal{F}=\{x \in U \mid \exists A \in \mathcal{F} . x \in A\} \in \mathcal{P}(U) .
$$

