Euclid's infinitude of primes Theorem 80 The set of primes is infinite. PROOF: By an Kedochion suppose There are a finte number of fromes. Consider N to be The product of all primes alus 1.

Since

[PI-12----- Pa] +1 N7 pi frællist,--, k Ninsta prine: There fore it is a product of prines. Let p be a prine and That p IN. We have no kind Contradiction P1. -. PR+1=N=p.lfor some lEN Soy p= pi fr sonei. Huce ofill-pi-pi-pin-pr)=1 D

Sets

Objectives

To introduce the basics of the theory of sets and some of its uses.

Neive Axiometr

Abstract sets

It has been said that a set is like a mental "bag of dots", except of course that the bag has no shape; thus,

may be a convenient way of picturing a certain set for some considerations, but what is apparently the same set may be pictured as

or even simply as

for other considerations.

Sets — A, B, ---, X, ---, U, -
Membership
relation

element set
Naive Set Theory

We are not going to be formally studying Set Theory here; rather, we will be *naively* looking at ubiquituous structures that are available within it.

— 283 —

Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

$$\forall$$
 sets A, B. $A = B \iff (\forall x. x \in A \iff x \in B)$

Example:

$$\{0\} \neq \{0,1\} = \{1,0\} \neq \{2\} = \{2,2\}$$

Subsets and supersets

ACB Aa subset of B

(=) (+x. x+A=) x+B)
B is a superset of A

Claim:
(ASB & BSA) (ABB)

Lemma 83

1. Reflexivity.

For all sets A, $A \subseteq A$.

2. Transitivity.

For all sets A, B, C, $(A \subseteq B \land B \subseteq C) \implies A \subseteq C$.

3. Antisymmetry.

For all sets A, B, $(A \subseteq B \land B \subseteq A) \implies A = B$.

Separation principle

For any set A and any definable property P, there is a set containing precisely those elements of A for which the property P holds.

NB:
$$\left\{x \in A \mid P(x)\right\} \subseteq A$$

$$a \in \left\{x \in A \mid P(x)\right\}$$

$$\left\{a \in A \land P(a)\right\}$$

Russell's paradox

Initially. Frege Moved definitions $\{x \mid P(x)\}$

So what about $\mathcal{U} = \{x \mid x \notin x\}$

? nen (=) nen?

Empty set

∅ or {}

defined by

$$\forall x. x \notin \emptyset$$

or, equivalently, by

$$\neg(\exists x. x \in \emptyset)$$

Cardinality

The *cardinality* of a set specifies its size. If this is a natural number, then the set is said to be *finite*.

Typical notations for the cardinality of a set S are S or S.

Example:

$$\#\emptyset = 0$$

$$P(\phi) = \{ \phi \} \qquad \#P(\phi) = 1$$

$$P(P(\phi)) = P(\{\phi\}) = \{ \phi, \{\phi\} \} \qquad \#P(P(\phi)) = 2$$
Powerset axiom

For any set, there is a set consisting of all its subsets.

$$\#PPP(\emptyset)=4$$

$$P(U)$$

$$\mathcal{M}: \emptyset \in \mathcal{P}(U)$$

$$\mathcal{U} \in \mathcal{P}(U)$$

$$\forall x. \ X \in \mathcal{P}(u) \iff X \subseteq u$$
.

Hasse diagrams

Proposition 84 For all finite sets U,

$$\#\mathcal{P}(U) = 2^{\#U}.$$
PROOF IDEA: Say $N = \{ x_1, x_2, ..., x_n \}$ for new
$$RTP \#\mathcal{P}(u) = 2^{h}.$$

$$\#\mathcal{P}(u) = \sum_{R=0}^{n} \#\text{Subsets of } u \text{ if } 82ek.$$

$$= \sum_{R=0}^{n} \binom{n}{R} = (1+1)^{n} = 2^{h}.$$

 $\mathcal{N} = \{ x_1, x_2, \dots, x_n \}$ To describe a subset of U, we need to state whether or not each xi is in the Subset. We can do This by decorating each zi with o or 1. Exaple Sx1, xn3 1 0 --- 0 1 2, 22 --- 2n-1 2n 1 1 --- 1 1 $\{\chi_1,\chi_2,\ldots,\chi_n\}$ The number of sequences of length n of 0's 11's is The number of substits of N, That is, 24.

Venn diagramsa

^aFrom http://en.wikipedia.org/wiki/Intersection_(set_theory).

Union

Complement

The powerset Boolean algebra
$$(\mathcal{P}(U), \emptyset, U, \cup, \cap, (\cdot)^{c})$$
 For all $A, B \in \mathcal{P}(U)$,
$$A \cup B = \{x \in U \mid x \in A \lor x \in B\} \in \mathcal{P}(U)$$

$$A \cap B = \{x \in U \mid x \in A \land x \in B\} \in \mathcal{P}(U)$$

$$A^{c} = \{x \in U \mid \neg(x \in A)\} \in \mathcal{P}(U)$$

► The union operation ∪ and the intersection operation ∩ are associative, commutative, and idempotent.

$$(A \cup B) \cup C = A \cup (B \cup C)$$
, $A \cup B = B \cup A$, $A \cup A = A$
 $(A \cap B) \cap C = A \cap (B \cap C)$, $A \cap B = B \cap A$, $A \cap A = A$

► The union operation ∪ and the intersection operation ∩ are associative, commutative, and idempotent.

$$(A \cup B) \cup C = A \cup (B \cup C)$$
, $A \cup B = B \cup A$, $A \cup A = A$
 $(A \cap B) \cap C = A \cap (B \cap C)$, $A \cap B = B \cap A$, $A \cap A = A$

► The *empty set* \emptyset is a neutral element for \cup and the *universal* set \cup is a neutral element for \cap .

$$\emptyset \cup A = A = U \cap A$$

► The empty set \emptyset is an annihilator for \cap and the universal set U is an annihilator for \cup .

$$\emptyset \cap A = \emptyset$$

$$U \cup A = U$$

 \blacktriangleright The empty set \emptyset is an annihilator for \cap and the universal set Uis an annihilator for \cup .

$$\emptyset \cap A = \emptyset$$

$$U \cup A = U$$

$$\frac{NB}{SCA}$$

$$0 \cap A = 0 \qquad \Rightarrow AUS = A$$

$$U \cup A = U \qquad ANBCA$$

▶ With respect to each other, the union operation ∪ and the intersection operation \cap are distributive and absorptive.

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 $P \vee (P \wedge Q) = P$
 $A \cup (A \cap B) = A = A \cap (A \cup B)$
 $-299-a$

 \blacktriangleright The complement operation $(\cdot)^c$ satisfies complementation laws.

$$A \cup A^{c} = U$$
, $A \cap A^{c} = \emptyset$