Euclid’s infinitude of primes
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Theorem §0 The set of primes is infinite.
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Sets
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Objectives

To introduce the basics of the theory of sets and some of its uses.
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Abstract sets
It has been said that a set is like a mental “bag of dots”, except of

course that the bag has no shape; thus,
-

o1 (1.2 o(13) (14 o(1,5)

2,3) 2,4) 2,5)

2,1) 2,2)

o21)  o(22) ol23) (24 ol

-
may be a convenient way of picturing a certain set for some con-
siderations, but what is apparently the same set may be pictured
as

[.m,n 021 o(1.2) ¢22) o(13) o(23) (14 o24) (1,5 .(2,5)]

D

for other considerations.

or even simply as
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Naive Set Theory

We are not going to be formally studying Set Theory here; rather,
we will be naively looking at ubiquituous structures that are

available within it. 9
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Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

Vsets A\B. A=B & (Vx.x€ A &< x€B)

Example:

0; 7 10,17 = {1,0; # {2} = 12,2}

— 284 —



Subsets and supersets

Ac 3 A g«éwé‘»f 5
Zilz é/li €A = ZC/’B)
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Lemma 83

1. Reflexivity.
For all sets A, A C A.

2. Transitivity.

Forall setsA,B,C, ACB ABCC) — A CC.

3. Antisymmetry.
For allsets A,B, ACB ANBCA) — A = B.
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Separation principle

For any set A and any definable property P, there is a
set containing precisely those elements of A for which
the property P holds.

@ : {xe»A[P(L)ﬁ c A

{(xe AlP(x)}

“i [&éﬁr A ?C&)j
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Russell’s paradox
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defined by

or, equivalently, by

Empty set

D or {}

Vx.x €0

—=(Ix.x € 0)
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Cardinality

"'he cardinality of a set specifies its size. If this is a natural number,
then the set is said to be finite.

ypical notations for the cardinality of a set S are #S or |S|.

Example:
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O (C)-C(LdD=c (3T #30(p)-2.

Pow CTS 6 axiom

For any set, there is a set consisting of all its subsets.
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Hasse diagrams
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Proposition 84 For all finite sets U,

#P(U) =274 .
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Venn diagrams?

*From http://en.wikipedia.org/wiki/Intersection_(set_theory) .
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Union Intersection

Complement
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The pow%s etXBoole an algebra

( T(U), Q)) u) U) ﬂ, ()C )
|
Forall AB e p(u), P e
AJ — {XEU|XEA\/IXEB} c P(U)

r m
ANB = {xelU|xeA AxeB} €PU)

= q
A = {xelU|—=(xeA)} c P(U)
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C”F. :P\[Q\:. Q\IP

» The union operation U and the intersection operation N are
associative, commutative, and idempotent.

(AUBJUC=AU(BUC), AUB=BUA, AUA=A

(ANB)NC=AN(BNC), ANB=BNA, ANA=A
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» The union operation U and the intersection operation N are
associative, commutative, and idempotent.

(AUBJUC=AU(BUC), AUB=BUA, AUA=A

(ANB)NC=AN(BNC), ANB=BNA, ANA=A

» The empty set () is a neutral element for U and the universal
set U is a neutral element for N.

PUA =A =UNA
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» The empty set () is an annihilator for N and the universal set U
IS an annihilator for U.

DNA=10

UUA=U
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» The empty set () is an annihilator for N and the universal set U
IS an annihilator for U.
NB SCA

v B

DNA=0 ;—?AUS’;'A

UWUA=U ~ ApRCA

» With respect to each other, the union operation U and the
intersection operation N are distributive and absorptive.

AN(BUC) = (ANB)U(ANC) , AU(BNC) = (AUB)N(AUC)
Pv(PAB)=-P

AU(ANB) = A = An(AUB) \/\/\,
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» The complement operation ()¢ satisfies complementation laws.

AUA=U, ANA°=0
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