gcd

```
fun \(\operatorname{gcd}(m, n)\)
    \(=\) let
    \(\operatorname{val}(\mathrm{q}, \mathrm{r})=\operatorname{divalg}(\mathrm{m}, \mathrm{n})\)
    in
            if \(r=0\) then \(n\)
            else \(\operatorname{gcd}(\mathrm{n}, \mathrm{r})\)
    end
```


Fractions in lowest terms

```
fun lowterms( m , n )
    = let
    val gcdval = gcd( m , n )
    in
        ( m div gcdval , n div gcdval )
    end
```


Some fundamental properties of gcds

Lemma 62 For all positive integers l, m, and n,

1. (Commutativity) $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m)$,
2. (Associativity) $\operatorname{gcd}(l, \operatorname{gcd}(\mathfrak{m}, \mathfrak{n}))=\operatorname{gcd}(\operatorname{gcd}(l, \mathfrak{m}), \mathfrak{n})$,
3. (Linearity) ${ }^{\mathrm{a}} \operatorname{gcd}(l \cdot m, l \cdot n)=l \cdot \operatorname{gcd}(m, n)$.

Proof:
${ }^{a}$ Aka (Distributivity).

Euclid's Theorem

Theorem 63 For positive integers k, m, and n, if $k \mid(m \cdot n)$ and $\operatorname{gcd}(\mathrm{k}, \mathrm{m})=1$ then $\mathrm{k} \mid \mathrm{n}$.
Proof: Let k, m, n be positive ütegers
As sumer $k \mid(m \cdot n)$ (2)
Assume $\operatorname{gcd}(R, m)=1$.
RTD: RUn
From (2): $n \cdot \operatorname{gcd}(R, m)=n$ and by lineanty

$$
\operatorname{gcd}(n \cdot k, n \cdot m)=n
$$

Frond (2) $m \cdot n=l \cdot R$ for sone l.
Therefore $n=\operatorname{gcd}(n \cdot R, n \cdot m)=\operatorname{gcd}(n \cdot k, l \cdot k)$

$$
=k \cdot g d\left(\frac{(n, l), \text { by line parity. }}{-209-}\right.
$$

Corollary 64 (Euclid's Theorem) For positive integers m and n, and prime p, if $p \mid(m \cdot n)$ then $p \mid m$ or $p \mid n$.

Now, the second part of Fermat's Little Theorem follows as a corollary of the first part and Euclid's Theorem.
Proof: Let min be positive ütegess and p be a prime. Assume: pl(m-n)
RTP: plo or plan
By cases consider:
(i) plo: Then we are done
(ii) pYm: Then g cd. $(p, m)=1$ and by the previous Theron we hare plan.

Fields of modular arithmetic

Corollary 66 For prime p, every non-zero element i of \mathbb{Z}_{p} has $\left[i^{p-2}\right]_{p}$ as multiplicative inverse. Hence, \mathbb{Z}_{p} is what in the mathematical jargon is referred to as a field.

Extended Euclid's Algorithm

Example 67

$\operatorname{gcd}(34,13)$	$34=2 \cdot 13+8$
$=\operatorname{gcd}(13,8)$	$13=1 \cdot 8+5$
$=\operatorname{gcd}(8,5)$	$8=1 \cdot 5+3$
$=\operatorname{gcd}(5,3)$	$5=1 \cdot 3+2$
$=\operatorname{gcd}(3,2)$	$3=1 \cdot 2+1$
$=\operatorname{gcd}(2,1)$	$2=2 \cdot 1+0$
$=1$	

Luear imteper conbinction. of n in thrus of a and b is given by l, R such Thite $n=l \cdot a+k \cdot b$ Example 67

$$
\begin{aligned}
& =1
\end{aligned}
$$

Linear combinations

Definition 68 An integer r is said to be a linear combination of a pair of integers m and n whenever
there exist a pair of integers s and t, referred to as the coefficients of the linear combination, such that

$$
\left[\begin{array}{ll}
s & t
\end{array}\right] \cdot\left[\begin{array}{c}
m \\
n
\end{array}\right]=r ;
$$

that is

$$
s \cdot m+t \cdot n=r
$$

Theorem 69 For all positive integers m and n,

1. $\operatorname{gcd}(m, n)$ is a linear combination of m and n, and
2. a pair $l_{c_{1}}(m, n), l_{2}(m, n)$ of integer coefficients for it, i.e. such that

$$
\left[\begin{array}{ll}
l_{1}(m, n) & l_{c_{2}}(m, n)
\end{array}\right] \cdot\left[\begin{array}{c}
m \\
n
\end{array}\right]=\operatorname{gcd}(m, n)
$$

can be efficiently computed.

Proposition 70 For all integers m and n,

1. $\left.\left[\begin{array}{cc}1 & 0 \\ ?_{1} & ?_{2}\end{array}\right] \cdot\left[\begin{array}{c}m \\ n\end{array}\right]=m \wedge \begin{array}{cc}0 & 1 \\ ?_{1} & ?_{2}\end{array}\right] \cdot\left[\begin{array}{c}m \\ n\end{array}\right]=n$;

Proposition 70 For all integers m and n,

1. $\left[\begin{array}{ll}?_{1} & ?_{2}\end{array}\right] \cdot\left[\begin{array}{l}m \\ n\end{array}\right]=m \wedge\left[\begin{array}{ll}?_{1} & ?_{2}\end{array}\right] \cdot\left[\begin{array}{l}m \\ n\end{array}\right]=n$;
2. for all integers $\mathrm{s}_{1}, \mathrm{t}_{1}, \mathrm{r}_{1}$ and $\mathrm{s}_{2}, \mathrm{t}_{2}, \mathrm{r}_{2}$,

$$
\left[\begin{array}{ll}
s_{1} & t_{1}
\end{array}\right] \cdot\left[\begin{array}{c}
m \\
n
\end{array}\right]=r_{1} \wedge\left[\begin{array}{ll}
s_{2} & t_{2}
\end{array}\right] \cdot\left[\begin{array}{c}
m \\
n
\end{array}\right]=r_{2}
$$

implies

$$
\begin{aligned}
& {\left[\begin{array}{ll}
?_{1} & ?_{2}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathrm{m} \\
\mathrm{n}
\end{array}\right]=\mathrm{r}_{1}+\mathrm{r}_{2} \text {; }} \\
& s_{2}+s_{2} f_{2}+t_{2}
\end{aligned}
$$

Proposition 70 For all integers m and n,

1. $\left[\begin{array}{ll}?_{1} & ?_{2}\end{array}\right] \cdot\left[\begin{array}{c}m \\ n\end{array}\right]=m \wedge\left[\begin{array}{ll}?_{1} & ?_{2}\end{array}\right] \cdot\left[\begin{array}{l}m \\ n\end{array}\right]=n$;
2. for all integers s_{1}, t_{1}, r_{1} and s_{2}, t_{2}, r_{2},

$$
\left[\begin{array}{ll}
s_{1} & t_{1}
\end{array}\right] \cdot\left[\begin{array}{c}
m \\
n
\end{array}\right]=r_{1} \wedge\left[\begin{array}{ll}
s_{2} & t_{2}
\end{array}\right] \cdot\left[\begin{array}{c}
m \\
n
\end{array}\right]=r_{2}
$$

implies

$$
\left[\begin{array}{ll}
?_{1} & ?_{2}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathrm{m} \\
\mathrm{n}
\end{array}\right]=\mathrm{r}_{1}+\mathrm{r}_{2} ;
$$

3. for all integers k and $\mathrm{s}, \mathrm{t}, \mathrm{r}$, R.S R.t

$$
\left[\begin{array}{ll}
\mathrm{s} & \mathrm{t}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathrm{m} \\
\mathrm{n}
\end{array}\right]=\mathrm{r} \text { implies }\left[\begin{array}{ll}
?_{1} & ?_{2}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathrm{m} \\
\mathrm{n}
\end{array}\right]=\mathrm{k} \cdot \mathrm{r} .
$$

gcd

fun $\operatorname{gcd}(m, n)$

```
= let
    fun gcditer( r1 , c as r2 )
    = let
        val (q,r) = divalg(r1,r2) (* r = r1-q*r2 *)
        in
            if r = 0
            then c
            else gcditer( c ,
                r )
            end
in
    gcditer( m , n )
    end
```


egcd

fun egcd (m , n)
= let
= let
val (q,r) $=\operatorname{divalg}(r 1, r 2) \quad(* r=r 1-q * r 2 *)$
in
if $r=0$
then lc
else egcditer (lc , ((s1-q*s2,t1-q*t2),r))
end
in
egcditer (($(1,0), m),((0,1), n))$
end
fun $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=\# 2(\operatorname{egcd}(\mathrm{~m}, \mathrm{n}))$
fun lc1(m , n) = \#1 (\#1 (egcd (m , n)))
fun lc2(m , n) = \#2(\#1 (egcd (m , n)))
$\eta=g c d(m, n)=l_{1} \cdot m+l_{C_{2}} \cdot n \equiv \frac{l_{e_{2}}}{3} \cdot n(m \sim d \cdot m) \equiv\left[l_{c_{2}}\right]_{m} \cdot n \cdot(m u d \cdot m)$
Multiplicative inverses in modular arfifthmetic
n^{-1} un \mathbb{Z}_{m}

Corollary 74 For all positive integers m and n,

1. $n \cdot \operatorname{lc}_{2}(m, n) \equiv \operatorname{gcd}(m, n)(\bmod m)$, and
2. whenever $\operatorname{gcd}(m, n)=1$,
$\left[\operatorname{lc}_{2}(\mathrm{~m}, \mathrm{n})\right]_{\mathrm{m}}$ is the multiplicative inverse of $[\mathrm{n}]_{\mathrm{m}}$ in \mathbb{Z}_{m}.

Natural Numbers and mathematical induction

We have mentioned in passing that the natural numbers are generated from zero by succesive increments. This is in fact the defining property of the set of natural numbers, and endows it with a very important and powerful reasoning principle, that of Mathematical Induction, for establishing universal properties of natural numbers.

Principle of Induction

Let $P(m)$ be a statement for m ranging over the set of natural numbers \mathbb{N}.
If

- the statement $\mathrm{P}(0)$ holds, and
- the statement

$$
\forall n \in \mathbb{N} .(P(n) \Longrightarrow P(n+1))
$$

also holds
then

- the statement

$$
\forall m \in \mathbb{N} . \mathrm{P}(\mathrm{~m})
$$

holds.

Binomial Theorem
Theorem 29 For all $n \in \mathbb{N}$,

$$
\left.(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot x^{n-k} \cdot y^{k} .\right] \equiv P(n)
$$

Proof: Dded.
By induction:
BABE CASE $(n=0)$:
RIP: $(x+y)^{0} \stackrel{?}{=} \sum_{k=0}^{0}\binom{n}{k} \cdot x^{n-k} \cdot y^{k}$
$\operatorname{Now}(x+y)^{0}=1$
and. $\sum_{R=0}^{0}\binom{0}{k} \cdot x^{0-k}-y^{k}=\binom{0}{0} x^{0-0} y^{0}=1$
We are dine.

InducizvésTEP:
$\forall n \in a l . P(n) \Rightarrow P(n+1)$
Assme $n \in \mathbb{N}$ and.

$$
\begin{equation*}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} \tag{IH}
\end{equation*}
$$

RTP:

$$
(x+y)^{n+1} \stackrel{?}{=} \sum_{k=0}^{n+1}\binom{n+1}{k} x^{n+1-k} y^{k}
$$

Scratch work: $(x+y)^{n+1}=(x+y)^{n} \cdot(x+y)$

$$
B y(I H)(x+y)^{n+1}=(x+y) \cdot\left(\sum_{R=0}^{n}\binom{n}{k} x^{n-k} y^{k}\right) \text {. }
$$

$$
\begin{aligned}
& (x+y)^{n+1}=x \cdot \sum_{n=0}^{k}\binom{n}{0} x^{n-k} y^{k}+y \cdot \sum_{n=0}^{k}\binom{n}{k} x^{n-k} y^{k} \\
& =\sum_{n=0}^{k}\binom{n}{k} x^{n+1-k} y^{k}+\sum_{n=0}^{k}\binom{n}{k} x^{n-k} y^{k+1} \\
& \binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1} \\
& \text { congecture } \\
& \text { (Provble by inductior) } \sum_{k=0}^{n+1}\left[\binom{n}{k}+\binom{n}{k-1}\right] \cdot x^{n+1-k} y^{k}
\end{aligned}
$$

RTP

$$
(x+y)^{n+1}=\sum_{k=0}^{n+1}\binom{n+1}{k} x^{n+1-k} y^{k}
$$

Principle of Induction

from basis ℓ

Let $\mathrm{P}(\mathrm{m})$ be a statement for m ranging over the natural numbers greater than or equal a fixed natural number ℓ. If

- $\mathrm{P}(\ell)$ holds, and
- $\forall \mathrm{n} \geq \ell$ in $\mathbb{N} .(P(n) \Longrightarrow P(n+1))$ also holds
then
- $\forall \mathrm{m} \geq \ell$ in $\mathbb{N} . \mathrm{P}(\mathrm{m})$ holds.

Principle of Strong Induction

 from basis ℓ and Induction Hypothesis $\mathrm{P}(\mathrm{m})$.Let $\mathrm{P}(\mathrm{m})$ be a statement for m ranging over the natural numbers greater than or equal a fixed natural number ℓ. If both

- $P(\ell)$ and
- $\forall n \geq \ell$ in $\mathbb{N} .((\forall k \in[\ell . . n] . P(k)) \Longrightarrow P(n+1))$
hold, then
- $\forall \mathrm{m} \geq \ell$ in $\mathbb{N} . \mathrm{P}(\mathrm{m})$ holds.

Fundamental Theorem of Arithmetic
Proposition 76 Every positive integer greater than or equal 2 is a prime or a product of primes.

Proof:

$$
\forall n \geqslant 2 . P(n)
$$

$$
P(n) \equiv n \text { is prime or }
$$ a product of prime

ing string induction:
BA在cose $P(2)$: But 2 is prince.
Two. STEP: $\forall n \geqslant 2$. Assume $P(k$.$) for 2 \leq k \leq n(S T H)$
RTE $P(n+1)$:
By case: (i) nt 1 is price - The we are done.
(ii) nHl is not prus -
$n+1=a \cdot b$ for $2 \leq a, b \leq n$
By (SIH): $P(a)$ and $P(b)$ hold.
That is, a. a price on a product of primes ad so is b.
Therefore not is a product of prices.

Theorem 77 (Fundamental Theorem of Arithmetic) For every positive integer n there is a unique finite ordered sequence of primes $\left(p_{1} \leq \cdots \leq p_{\ell}\right)$ with $\ell \in \mathbb{N}$ such that

$$
\mathrm{n}=\prod\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\ell}\right)
$$

Proof:

