
gcd

fun gcd(m , n)

= let

val (q , r) = divalg(m , n)

in

if r = 0 then n

else gcd(n , r)

end

— 188 —

Fractions in lowest terms

fun lowterms(m , n)

= let

val gcdval = gcd(m , n)

in

(m div gcdval , n div gcdval)

end

— 199 —

Some fundamental properties of gcds

Lemma 62 For all positive integers l, m, and n,

1. (Commutativity) gcd(m,n) = gcd(n,m),

2. (Associativity) gcd
�

l, gcd(m,n)
�

= gcd(gcd(l,m), n),

3. (Linearity)a gcd(l ·m, l · n) = l · gcd(m,n).

PROOF:

aAka (Distributivity).
— 202 —

Euclid ′s Theorem

Theorem 63 For positive integers k, m, and n, if k | (m · n) and

gcd(k,m) = 1 then k | n.

PROOF:

— 209 —

Corollary 64 (Euclid’s Theorem) For positive integers m and n,

and prime p, if p | (m · n) then p | m or p | n.

Now, the second part of Fermat’s Little Theorem follows as a

corollary of the first part and Euclid’s Theorem.

PROOF:

— 211 —

Fields of modular arithmetic

Corollary 66 For prime p, every non-zero element i of Zp

has [ip−2]p as multiplicative inverse. Hence, Zp is what in

the mathematical jargon is referred to as a field.

— 215 —

Extended Euclid ′s Algorithm

Example 67

gcd(34, 13) 34 = 2· 13 + 8

= gcd(13, 8) 13 = 1· 8 + 5

= gcd(8, 5) 8 = 1· 5 + 3

= gcd(5, 3) 5 = 1· 3 + 2

= gcd(3, 2) 3 = 1· 2 + 1

= gcd(2, 1) 2 = 2· 1 + 0

= 1

— 216 —

Extended Euclid ′s Algorithm

Example 67

gcd(34, 13) 34 = 2· 13 + 8 8 = 34 −2· 13

= gcd(13, 8) 13 = 1· 8 + 5 5 = 13 −1· 8

= gcd(8, 5) 8 = 1· 5 + 3 3 = 8 −1· 5

= gcd(5, 3) 5 = 1· 3 + 2 2 = 5 −1· 3

= gcd(3, 2) 3 = 1· 2 + 1 1 = 3 −1· 2

= gcd(2, 1) 2 = 2· 1 + 0

= 1

— 216-a —

gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= 13 −1·
z }| {
(34− 2 · 13)

= −1 · 34+ 3 · 13
= gcd(8, 5) 3 = 8 −1· 5

=
z }| {
(34− 2 · 13) −1·

z }| {
(−1 · 34+ 3 · 13)

= 2 · 34+ (−5) · 13
= gcd(5, 3) 2 = 5 −1· 3

=
z }| {
−1 · 34+ 3 · 13 −1·

z }| {
(2 · 34+ (−5) · 13)

= −3 · 34+ 8 · 13
= gcd(3, 2) 1 = 3 −1· 2

=
z }| {
(2 · 34+ (−5) · 13) −1·

z }| {
(−3 · 34+ 8 · 13))

= 5 · 34+ (−13) · 13

— 217-d —

Linear combinations

Definition 68 An integer r is said to be a linear combination of a

pair of integers m and n whenever

there exist a pair of integers s and t, referred to as the

coefficients of the linear combination, such that

�

s t
�

·
�

m

n

�

= r ;

that is

s ·m+ t · n = r .

— 218 —

Theorem 69 For all positive integers m and n,

1. gcd(m,n) is a linear combination of m and n, and

2. a pair lc1(m,n), lc2(m,n) of integer coefficients for it,

i.e. such that

�

lc1(m,n) lc2(m,n)
�

·
�

m

n

�

= gcd(m,n) ,

can be efficiently computed.

— 220 —

Proposition 70 For all integers m and n,

1.
�

?1 ?2
�

·
�

m

n

�

= m ∧
�

?1 ?2
�

·
�

m

n

�

= n ;

— 221 —

Proposition 70 For all integers m and n,

1.
�

?1 ?2
�

·
�

m

n

�

= m ∧
�

?1 ?2
�

·
�

m

n

�

= n ;

2. for all integers s1, t1, r1 and s2, t2, r2,

�

s1 t1
�

·
�

m

n

�

= r1 ∧
�

s2 t2
�

·
�

m

n

�

= r2

implies

�

?1 ?2
�

·
�

m

n

�

= r1 + r2 ;

— 221-a —

Proposition 70 For all integers m and n,

1.
�

?1 ?2
�

·
�

m

n

�

= m ∧
�

?1 ?2
�

·
�

m

n

�

= n ;

2. for all integers s1, t1, r1 and s2, t2, r2,

�

s1 t1
�

·
�

m

n

�

= r1 ∧
�

s2 t2
�

·
�

m

n

�

= r2

implies

�

?1 ?2
�

·
�

m

n

�

= r1 + r2 ;

3. for all integers k and s, t, r,

�

s t
�

·
�

m

n

�

= r implies
�

?1 ?2
�

·
�

m

n

�

= k · r .

— 221-b —

gcd

fun gcd(m , n)

= let

fun gcditer(r1 , c as r2)

= let

val (q,r) = divalg(r1,r2) (* r = r1-q*r2 *)

in

if r = 0

then c

else gcditer(c , r)

end

in

gcditer(m , n)

end

— 222 —

egcd

fun egcd(m , n)

= let

fun egcditer(((s1,t1),r1) , lc as ((s2,t2),r2))

= let

val (q,r) = divalg(r1,r2) (* r = r1-q*r2 *)

in

if r = 0

then lc

else egcditer(lc , ((s1-q*s2,t1-q*t2),r))

end

in

egcditer(((1,0),m) , ((0,1),n))

end

— 222-a —

fun gcd(m , n) = #2(egcd(m , n))

fun lc1(m , n) = #1(#1(egcd(m , n)))

fun lc2(m , n) = #2(#1(egcd(m , n)))

— 225 —

Multiplicative inverses in modular arithmetic

Corollary 74 For all positive integers m and n,

1. n · lc2(m,n) ≡ gcd(m,n) (mod m), and

2. whenever gcd(m,n) = 1,
�

lc2(m,n)
�

m
is the multiplicative inverse of [n]m in Zm .

— 228 —

Natural Numbers
and mathematical induction

We have mentioned in passing that the natural numbers are

generated from zero by succesive increments. This is in fact the

defining property of the set of natural numbers, and endows it with

a very important and powerful reasoning principle, that of

Mathematical Induction, for establishing universal properties of

natural numbers.

— 233 —

Principle of Induction

Let P(m) be a statement for m ranging over the set of natural

numbers N.

If

◮ the statement P(0) holds, and

◮ the statement

∀n ∈ N.
�

P(n) =⇒ P(n+ 1)
�

also holds

then

◮ the statement

∀m ∈ N. P(m)

holds.

— 234 —

Binomial Theorem

Theorem 29 For all n ∈ N,

(x+ y)n =
Pn

k=0

�

n
k

�

· xn−k · yk .

PROOF:

— 239 —

Principle of Induction
from basis ℓ

Let P(m) be a statement for m ranging over the natural

numbers greater than or equal a fixed natural number ℓ.

If

◮ P(ℓ) holds, and

◮ ∀n ≥ ℓ in N.
�

P(n) =⇒ P(n+ 1)
�

also holds

then

◮ ∀m ≥ ℓ in N. P(m) holds.

— 253 —

Principle of Strong Induction

from basis ℓ and Induction Hypothesis P(m).

Let P(m) be a statement for m ranging over the natural

numbers greater than or equal a fixed natural number ℓ.

If both

◮ P(ℓ) and

◮ ∀n ≥ ℓ in N.
�

�

∀k ∈ [ℓ..n]. P(k)
�

=⇒ P(n+ 1)
�

hold, then

◮ ∀m ≥ ℓ in N. P(m) holds.

— 257 —

Fundamental Theorem of Arithmetic

Proposition 76 Every positive integer greater than or equal 2 is a

prime or a product of primes.

PROOF:

— 259 —

Theorem 77 (Fundamental Theorem of Arithmetic) For every

positive integer n there is a unique finite ordered sequence of

primes (p1 ≤ · · · ≤ pℓ) with ℓ ∈ N such that

n =
Q

(p1, . . . , pℓ) .

PROOF:

— 263 —

