Modular arithmetic

For every positive integer m, the integers modulo m are:

Loy = O, 1, ..., m—1.

with arithmetic operations of addition +,,, and multiplication -,
defined as follows

k4+nl = k+1, = rem(k+1l,m) ,
kml = k-1, = rem(k-1l,m)

forall 0 <k,l < m.
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Example 49 The addition and multiplication tables for 7., are:

.00 1 2 3 4101 23
010123 0lo0 000
111230 1lof1 2 3
21230 1 210(2 0 2
31301 2 310/3 2/

Note that the addition table has a cyclic pattern, while there is no
obvious pattern in the multiplication table.

.9)‘43::.1
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

a?dditive mu{tiplicative
inverse inverse

0 0 0 —

| 3 | |

2 2 2 —

3 1 3 3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.
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Example 50 The addition and multiplication tables for Zs are:

(01 2 3 4 101 2 3 4
0101 2 3 4 010 00 0 0

—
1112 3 4 0 11012 3 4
21234 0 1 2102 471D 3
313401 2 303@42
4 14 01 2 3 4104 3 2D

Again, the addition table has a cyclic pattern, while this time the
multiplication table restricted to non-zero elements has a
permutation pattern.
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

a?dditive mu{tiplicative
inverse inverse

0 0 0 —

1 4 1 1

2 3 2 3

3 2 3 2

4 1 4 4

Surprisingly, every non-zero element has a multiplicative inverse.
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Proposition 51 o%ﬁ?lf nétura)numbers m > 1, the

modular-arithmetic structure 4 0&(3 M bﬂ:\re [ R
(Zm, O, +m) 1 ) m)

IS @ commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have
further mathematical structure in the form of multiplicative inverses
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Important mathematical jargon: @

Very roughly, sets are the mathematicians’ data structures.
Informally, we will consider a set as a (well-defined, unordered)

collection of mathematical objects, called the elements (or
members) of the set.
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Set membership

The symbol ‘€’ known as the set membership predicate is central to
the theory of sets, and its purpose is to build statements of the form

W"‘"O"ﬁ‘& JlxeAr s

that are true whenever it is the case that the object x is an element
of the set A, and false otherwise.
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Defining sets

of even primes
The set of booleans
[—2..3]

IS

{2}

{true, false}

{_2>_1>O>1>2>3}

26527 truwe  while 36§27 falic

{ true, fa/LH} - { Solse, fmefi
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Set comprehension

The basic idea behind set comprehension is to define a set
by means of a property that precisely characterises all the
elements of the set.

Notations:

{IxeA|P(x)} , {xe A:P(x)}
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Greatest common divisor

Given a natural number n, the set of its divisors is defined by set
comprehension as follows

Dn)={deN:d|n} .
Example 53
1. D(0) =N

( )
1,2,3,4,6,8,9,12,17,18, 24,34, 36,51, 68,
2. D(1224) = ¢ >

72,102,136,153,204, 306,408, 612, 1224

\ /

Remark Sets of divisors are hard to compute. However, the
computation of the greatest divisor is straightforward. :)
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Going a step further, what about the common divisors of pairs of
natural numbers? Thalt is, the set l # WL andl

{deN:d|m Adn}

for m,n € N.

Example 54
CD(1224,660) ={1,2,3,4,6,12}

Since CD(n,n) = D(n), the computation of common divisors is as
hard as that of divisors. But, what about the computation of the

greatest common divisor? E*/é‘ %ML (/12_1‘{ ) b éo) = 17
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Lemma 56 (Key Lemma) Let m and m'’ al numbers and
let n be a positive integer such that m/n%@. Then,
“albanlc o alib-ka"il CD(m.n) = CD\(m’ 0
- 7 N\
PROOF: E”L@\‘: at[m/\dlna S een - efm' A 6["LE
Lt .

/Vd@d@[m AA[VL) => (dlv"\!/\oul’l) (1)
" = | €\ (2
Jeen. el aein)s (elmn €i)C)

D 2ed?
Jom deN. AssSung d|m 3 d|n. .
G) Rzp Ehlm! Efg@)d[v\, el do k) &mwﬁ\m
Z{ﬂm (4 ) m!:: M- Ron. !
ro- (v Al fﬂw@ dn - &ol] m-Rn=m".

4
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Ts arwrh»@
CD ( W\,"l) = GD(M” VL) Mq=s-me

= CD (th! VL') My = g

!

Lo o we chide m;?

C.D (V\'\, VL) =~ C) (W\,-—-VL} r\,) M2 —h MW)

\ CD( w(lw\,vx) —min (M) ) Wan Cm,w))

CD(mn) = C D(m+nn)



Lemma 58 For all positive integers m and n,
%‘Efnh )” =" mim

CD (n, rem(m, n)) , otherwise

me(m,n) = <

?'W = %CM‘W) Mw)
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Lemma 58 For all positive integers m and n,

D(n) ,fn|m
CD(m,n) = 4

\ CD(n, rem(m, n)) , otherwise

Since a positive integer n is the greatest divisor in D(n), the lemma
suggests a recursive procedure:

( .
n fn|m

ng(m> Tl) = 3

| ged (n, rem(m, n)) , otherwise

for computing the greatest common divisor, of two positive integers
m and n. This is

Euclid’s Algorithm
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gcd

fun gcd( m , n )
= let
val (g , r ) = divalg(m , n )
in
if r = 0 then n
else gcd( n , r )

end
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Example 59 (gcd(13,34) = 1)

0cd(13,34) = gcd(34,13)

{ %co((n W\)

gedls,34]= 1 . Coprime.
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Theorem 60 Euclid’s Algorithm gcd terminates on all pairs of
positive integers and, for such m andn, gcd(m,n) Is the greatest
common divisor of m and n in the sense that the following two
properties hold:

(1) both gcd(m,n) | m and gcd(m,n) | n, and

(i1) for all positive integers d such thatd | m and d | n it necessarily
follows that d | gcd(m,n).

PROOF: mak‘uo(‘{&\,
CH(myn) = D(gg_t ()
ot & %ME (il o (i)
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gcd(m, n)

m:ql-n+r
O<m<n
q>0, O|<r<n
<

ged(n,r) ~* gcd(n, m)

n=q’ -r+7r’
q’'>0,0<r' <r

| r P&s QV\,

ged(r, 1)

e comaincy posht.

Tl elgw‘m v WDn e
in, O (W\‘”c(m/'\))
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