
Modular arithmetic

For every positive integer m, the integers modulo m are:

Zm : 0 , 1 , . . . , m− 1 .

with arithmetic operations of addition +m and multiplication ·m
defined as follows

k+m l = [k+ l]m = rem(k+ l,m) ,

k ·m l = [k · l]m = rem(k · l,m)

for all 0 ≤ k, l < m.
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Example 49 The addition and multiplication tables for Z4 are:

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

·4 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Note that the addition table has a cyclic pattern, while there is no

obvious pattern in the multiplication table.
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From the addition and multiplication tables, we can readily read

tables for additive and multiplicative inverses:

additive
inverse

0 0

1 3

2 2

3 1

multiplicative
inverse

0 −

1 1

2 −

3 3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.
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Example 50 The addition and multiplication tables for Z5 are:

+5 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

·5 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Again, the addition table has a cyclic pattern, while this time the

multiplication table restricted to non-zero elements has a

permutation pattern.
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From the addition and multiplication tables, we can readily read

tables for additive and multiplicative inverses:

additive
inverse

0 0

1 4

2 3

3 2

4 1

multiplicative
inverse

0 −

1 1

2 3

3 2

4 4

Surprisingly, every non-zero element has a multiplicative inverse.
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Proposition 51 For all natural numbers m > 1, the

modular-arithmetic structure

(Zm, 0,+m, 1, ·m)

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have

further mathematical structure in the form of multiplicative inverses

.
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Important mathematical jargon : Sets

Very roughly, sets are the mathematicians’ data structures.

Informally, we will consider a set as a (well-defined, unordered)

collection of mathematical objects, called the elements (or

members) of the set.
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Set membership

The symbol ‘∈’ known as the set membership predicate is central to

the theory of sets, and its purpose is to build statements of the form

x ∈ A

that are true whenever it is the case that the object x is an element

of the set A, and false otherwise.
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Defining sets

The set

of even primes

of booleans

[−2..3]

is

{ 2 }

{ true , false }

{−2 , −1 , 0 , 1 , 2 , 3 }
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Set comprehension

The basic idea behind set comprehension is to define a set

by means of a property that precisely characterises all the

elements of the set.

Notations:

{ x ∈ A | P(x) } , { x ∈ A : P(x) }
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Greatest common divisor

Given a natural number n, the set of its divisors is defined by set

comprehension as follows

D(n) =
�
d ∈ N : d | n

	
.

Example 53

1. D(0) = N

2. D(1224) =





1, 2, 3, 4, 6, 8, 9, 12, 17, 18, 24, 34, 36, 51, 68,

72, 102, 136, 153, 204, 306, 408, 612, 1224






Remark Sets of divisors are hard to compute. However, the

computation of the greatest divisor is straightforward. :)
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Going a step further, what about the common divisors of pairs of

natural numbers? That is, the set

CD(m,n) =
�
d ∈ N : d | m ∧ d | n

	

for m,n ∈ N.

Example 54

CD(1224, 660) = { 1, 2, 3, 4, 6, 12 }

Since CD(n,n) = D(n), the computation of common divisors is as

hard as that of divisors. But, what about the computation of the

greatest common divisor?
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Lemma 56 (Key Lemma) Let m and m ′ be natural numbers and

let n be a positive integer such that m ≡ m ′ (mod n). Then,

CD(m,n) = CD(m ′, n) .

PROOF:
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Lemma 58 For all positive integers m and n,

CD(m,n) =





D(n) , if n | m

CD
�

n, rem(m,n)
�

, otherwise
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Lemma 58 For all positive integers m and n,

CD(m,n) =





D(n) , if n | m

CD
�

n, rem(m,n)
�

, otherwise

Since a positive integer n is the greatest divisor in D(n), the lemma

suggests a recursive procedure:

gcd(m,n) =





n , if n | m

gcd
�

n, rem(m,n)
�

, otherwise

for computing the greatest common divisor, of two positive integers

m and n. This is

Euclid ′s Algorithm
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gcd

fun gcd( m , n )

= let

val ( q , r ) = divalg( m , n )

in

if r = 0 then n

else gcd( n , r )

end
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Example 59 (gcd(13, 34) = 1)

gcd(13, 34) = gcd(34, 13)

= gcd(13, 8)

= gcd(8, 5)

= gcd(5, 3)

= gcd(3, 2)

= gcd(2, 1)

= 1
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Theorem 60 Euclid’s Algorithm gcd terminates on all pairs of

positive integers and, for such m and n, gcd(m,n) is the greatest

common divisor of m and n in the sense that the following two

properties hold:

(i) both gcd(m,n) | m and gcd(m,n) | n, and

(ii) for all positive integers d such that d | m and d | n it necessarily

follows that d | gcd(m,n).

PROOF:
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gcd(m,n)

n|m

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

m = q · n + r

q > 0 , 0 < r < n
0<m<n

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

n gcd(n, r)

r|n

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

n = q ′
· r + r ′

q ′ > 0 , 0 < r ′ < r

gcd(n,m)

r gcd(r, r ′)
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