Modular arithmetic

For every positive integer m, the integers modulo m are:

$$
\mathbb{Z}_{\mathrm{m}}: 0,1, \quad \cdots, m-1
$$

with arithmetic operations of addition $+_{m}$ and multiplication $\cdot m$ defined as follows

$$
\begin{aligned}
& k+_{m} l=[k+l]_{m}=\operatorname{rem}(k+l, m), \\
& k \cdot m=[k \cdot l]_{m}=\operatorname{rem}(k \cdot l, m)
\end{aligned}
$$

for all $0 \leq k, l<m$.

3 has multiplicative menerse, namely itself.
2 has no multiplicative inverse.
Example 49 The addition and multiplication tables for \mathbb{Z}_{4} are:

+4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

.4	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Note that the addition table has a cyclic pattern, while there is no obvious pattern in the multiplication table.

$$
3 \cdot 43=1
$$

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse
0	0
1	3
2	2
3	1

	multiplicative inverse
0	-
1	1
2	-
3	3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.

Every umber a X_{5} has mulhiplicative wherse!

Example 50 The addition and multiplication tables for \mathbb{Z}_{5} are:

$+_{5}$	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

$\cdot 5$	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Again, the addition table has a cyclic pattern, while this time the multiplication table restricted to non-zero elements has a permutation pattern.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse
0	0
1	4
2	3
3	2
4	1

	multiplicative inverse
0	-
1	1
2	3
3	2
4	4

Surprisingly, every non-zero element has a multiplicative inverse.
$\left(7 l m, 0,1_{m}\right)$ abelion group
=def commutative monoid with inverses t. (Him 1 "m. commutative monon.sid

Proposition 51 For all natural numbers $m>1$, the

$$
\begin{gathered}
\text { modular-arithmetic structure }+ \text { distributive law. } \\
\left(\mathbb{Z}_{\mathrm{m}}, 0,+_{\mathrm{m}}, 1, \cdot \mathrm{~m}\right)
\end{gathered}
$$

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have further mathematical structure in the form of multiplicative inverses

Important mathematical jargon: (Sets

Very roughly, sets are the mathematicians' data structures. Informally, we will consider a set as a (well-defined, unordered) collection of mathematical objects, called the elements (or members) of the set.

Set membership

The symbol ' \in ' known as the set membership predicate is central to the theory of sets, and its purpose is to build statements of the form

that are true whenever it is the case that the object x is an element of the set A, and false otherwise.

Defining sets
The set $\left|\begin{array}{c}\text { of even primes } \\ \text { of boolean } \\ {[-2.3]}\end{array}\right|$ is $\left|\begin{array}{c}\{2\} \\ \{\text { true, false }\} \\ \{-2,-1,0,1,2,3\}\end{array}\right|$
$2 \in\{2\}$ true while $3 \in\{2\}$ false

$$
\left\{\text { true, } f{ }^{\prime} \text { se }\right\}=\{\text { false, true. }\}
$$

$a \in\{x \in A \mid P(x)\} \Leftrightarrow(a \in A \wedge P(a))$

Set comprehension

The basic idea behind set comprehension is to define a set by means of a property that precisely characterises all the elements of the set.

Notations:

$$
\{x \in A \mid P(x)\} \quad, \quad\{x \in A: P(x)\}
$$

Greatest common divisor

Given a natural number n, the set of its divisors is defined by set comprehension as follows

$$
D(n)=\{d \in \mathbb{N}: d \mid n\} .
$$

Example 53

$$
\begin{aligned}
& \text { 1. } \mathrm{D}(0)=\mathbb{N} \\
& \text { 2. } \mathrm{D}(1224)=\left\{\begin{array}{c}
1,2,3,4,6,8,9,12,17,18,24,34,36,51,68 \\
72,102,136,153,204,306,408,612,1224
\end{array}\right\}
\end{aligned}
$$

Remark Sets of divisors are hard to compute. However, the computation of the greatest divisor is straightforward. :)

Going a step further, what about the common divisors of pairs of natural numbers? That is, the set
for $m, n \in \mathbb{N}$.

Example 54

$$
\mathrm{CD}(1224,660)=\{1,2,3,4,6,12\}
$$

Since $C D(n, n)=D(n)$, the computation of common divisors is as hard as that of divisors. But, what about the computation of the greatest common divisor? E.g. g.c.d $(1224,660)=12$

Assume: : $1 / m-m^{\prime}=k n$ for $k i n t$.
Lemma 56 (Key Lemma) Let m and m^{\prime} be natural numbers and let n be a positive integer such that $\mathrm{m} \equiv \mathrm{m}^{\prime}(\bmod \mathrm{n})$. Then,

$$
a|b \wedge a| c \Rightarrow a \mid i b+j c
$$

$$
\mathrm{CD}(\mathrm{~m}, n)=\mathrm{CD}\left(\mathrm{~m}^{\prime}, n\right)
$$

Proof: $\{d \in \mathbb{N}: d \mid \operatorname{mad} \ln \}$
$\left\{e \in \mathbb{N}: e . m^{\prime} \wedge e / n\right\}$
RIP:

$$
\begin{aligned}
& \forall d \in \mathbb{N} \cdot(d|m \wedge d| n) \Rightarrow\left(d\left|m^{\prime} \wedge d\right| n\right)(1) \\
& \forall e \in \mathbb{N} \cdot\left(e\left|m^{\prime} \wedge e\right| n\right) \Rightarrow(e|m \wedge e| n)(2)
\end{aligned}
$$

(1) Lett $d \in \mathbb{N}$. As sump d / m ard $d^{(3)} d \mid n$.

RTP: :(i)d.Im! \quad From (1) $m^{\prime}=m-k n \quad$ RTP: (ii) d In holds by assumption From (1) $m^{\prime}=m-k n$ From (3) d / m, from (3) $d \cdot l n$. So $d \mid m-k n=m$!

To conpute

$$
\begin{aligned}
C D(m, n) & =C D\left(m_{1}, n\right) & & m_{1} \equiv m \\
& =C D\left(m_{2}, n\right) & & m_{2} \equiv m_{1}
\end{aligned}
$$

How do we chise m_{i} ?

$$
\begin{aligned}
& C D(m, n)=C \cdot D(m-n, n) \\
& \quad \| \cdot D(\underline{\max }(m, n)-\min (m, n), \min (m, n)) \\
& C \cdot D(m, n)=C D(m+n, n)
\end{aligned}
$$

Lemma 58 For all positive integers m and n,

$$
m \equiv \operatorname{rem}(m, n) \quad(\bmod n)
$$

Lemma 58 For all positive integers m and n,

$$
\mathrm{CD}(\mathfrak{m}, \mathfrak{n})= \begin{cases}\mathrm{D}(\mathfrak{n}) & , \text { if } \mathfrak{n} \mid \mathrm{m} \\ \mathrm{CD}(\mathrm{n}, \operatorname{rem}(\mathrm{~m}, \mathfrak{n})) & , \text { otherwise }\end{cases}
$$

Since a positive integer n is the greatest divisor in $D(n)$, the lemma suggests a recursive procedure:

$$
\operatorname{gcd}(m, n)= \begin{cases}n & , \text { if } n \mid m \\ \operatorname{gcd}(n, \operatorname{rem}(m, n)) & , \text { otherwise }\end{cases}
$$

for computing the greatest common divisor, of two positive integers m and n. This is

Euclid's Algorithm

gcd

```
fun \(\operatorname{gcd}(m, n)\)
    \(=\) let
    \(\operatorname{val}(\mathrm{q}, \mathrm{r})=\operatorname{divalg}(\mathrm{m}, \mathrm{n})\)
    in
            if \(r=0\) then \(n\)
            else \(\operatorname{gcd}(\mathrm{n}, \mathrm{r})\)
    end
```

$$
\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m)
$$

Example $59(\operatorname{gcd}(13,34)=1)$

$$
\begin{aligned}
\operatorname{gcd}(13,34) & =\operatorname{gcd}(34,13) \\
& =\operatorname{gcd}(13,8) \\
& =\operatorname{gcd}(8,5) \\
& =\operatorname{gcd}(5,3) \\
& =\operatorname{gcd}(3,2) \\
& =\operatorname{gcd}(2,1) \text { 访ard.34 are. } \\
\operatorname{gcd}(13, \mathbf{3 4}) & =1 \text { concrime } \\
-\mathbf{1 9 0} &
\end{aligned}
$$

Theorem 60 Euclid's Algorithm ged terminates on all pairs of positive integers and, for such m and $n, \operatorname{gcd}(m, n)$ is the greatest common divisor of m and n in the sense that the following two properties hold:
(i) both $\operatorname{gcd}(m, n) \mid m$ and $\operatorname{gcd}(m, n) \mid n$, and
(ii) for all positive integers d such that $\mathrm{d} \mid \mathrm{m}$ and $\mathrm{d} \mid \mathrm{n}$ it necessarily follows that $\mathrm{d} \mid \operatorname{gcd}(\mathrm{m}, \mathrm{n})$.
PROOF: By construction

$$
C D(m, n)=D(g c d(m, n))
$$

which is equivalent to (i) and (ii).

PROOF PRINCIPLE for showing That a number x. is the greatest common divisor of m and n.
(1) Rove that it in a coumsu dieter:

$$
\left.\left.x\right|_{m} \wedge x\right|_{m}
$$

(2) Prove That
of $d l_{m} \wedge d l_{n}$ Then $\left.d\right|_{x}$

