The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $q \ge 0, 0 \le r < n$, and $m = q \cdot n + r$.

$$\begin{array}{l} \forall n \ \text{sl.} m, \ pos.n \ \text{sl.} n. \\ (\exists int q, r. q \ 20, 0 \le r < n, \ m = q \ n + r) \\ \land [\forall q, q', r, r', q, q' \ 20, 0 \le r, r' < n,] \\ \forall q, q', r, r', q, q' \ 20, 0 \le r, r' < n,] \\ & m = q \ n + r \ n = q' \ n + r' \\ & = \left\{ q = q' \ n \ r = r' \\ & -155 \right\}_{-} \end{array}$$

Uniqueness Asume not m, pos. not n. Assume $q_1q_1', r_1', q_1q_1', 0, 0 \le r_1r' \le n_1'$ $m = q_1 n + r_n m = q_1' - n + r_1'$ $R7P: g=g! \wedge r=r!$ From () ad (2) (q-q!) n=r-r (2) Case (i): Support, r. so That r-r is a natural. that by (3) is < n, ad by (2) is a multiple of n. There fore q-q'=2 and hence q=q!.

As g=q! $q \cdot n + r = m = q \cdot n + r!$ By concellation, rar!. Case r?, r': Consider (g'-g). n = r-r' and proced analogous by

The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $q \ge 0$, $0 \le r < n$, and $m = q \cdot n + r$.

Definition 44 The natural numbers q and r associated to a given pair of a natural number m and a positive integer n determined by the Division Theorem are respectively denoted quo(m, n) and rem(m, n).

PROOF OF Theorem 43:

$$div dg(m,n)$$

$$div ter(0,m)$$

$$m < n / (0,m) \quad dv ter(1,m-n)$$

$$m - n < n / (1,m-n) \quad dv ter(2,m-2n)$$

$$m - 2n < n / (2,m-2n)$$

Partial Correctness

$$m \leq n$$

 $m \leq n$
 $(0,m)$
 $M = 0 \cdot n + m$
 $(0,m)$
 $M = 0 \cdot n + m$
 $(0,m)$
 $M = q_{i} \cdot n + r_{i}$
 $M = q_{i} \cdot n + r_{i}$
 $M = q_{i} \cdot n + r_{i+1}$
 (q_{i}, r_{i})
 $M = q_{i+1} \cdot n + r_{i+1}$
 (q_{i}, r_{i})
 $M = q_{i+1} \cdot n + r_{i+1}$
 $(q_{i} \cdot n + n + r_{i} - n) = q_{i} \cdot n + f_{i} = m$
 $Partial Correctness
 $M = 0 \cdot n + m$
 $f_{i} \cdot n + n + r_{i}$
 (q_{i}, r_{i})
 $M = q_{i+1} = q_{i+1}$
 $r_{i+1} = r_{i} - n$$

If the computation terminates in styp k. Then

$$m = q_R \cdot n + r_R$$
 and $r_R < n$

fun quo(m, n) = #1(divalg(m, n))

fun rem(m, n) = #2(divalg(m, n))

Theorem 45 For every natural number m and positive natural number n, the evaluation of divalg(m, n) terminates, outputing a pair of natural numbers (q_0, r_0) such that $r_0 < n$ and $m = q_0 \cdot n + r_0$.

PROOF:

$$k = gou(k,m) \cdot m + rem(k,m)$$

Proposition 46 Let m be a positive integer. For all natural numbers k and l, $l = q_{uv}(l_{im}) \cdot m + rem(l_{im})$ $k \equiv l \pmod{m} \iff rem(k,m) = rem(l,m)$. PROOF: Let m be a poilire nteger, Let R, l be not. $(\models) E \ge n_{2}$.

$$(\Longrightarrow) Assund k-l=i.m for some i mt.$$

$$(g_{uv}(R,n) - g_{uv}(l,m)) - m + (rem(k,m) - rem(l,m))$$

Then rem
$$(k, m) - rem (l, m) = 0$$

for rem $(k, m) = rem (l, m)$.

Corollary 47 Let m be a positive integer.

1. For every natural number n, $n \equiv rem(n, m) \pmod{m}$.

Smal

$$n = quo(n,m) \cdot m + ren(n,m)$$

we have $n - rem(n,m)$ is a multiple of m
PROOF:

Corollary 47 Let m be a positive integer.

1. For every natural number n,

```
n \equiv \operatorname{rem}(n, m) \pmod{m} .
```

2. For every integer k there exists a unique integer $[k]_m$ such that $0 \le [k]_m < m$ and $k \equiv [k]_m \pmod{m}$.

