The division theorem and algorithm
Theorem 43 (Division Theorem) For every natural number m and positive natural number n , there exists a unique pair of integers q and r such that $\mathrm{q} \geq 0,0 \leq \mathrm{r}<\mathrm{n}$, and $\mathrm{m}=\mathrm{q} \cdot \mathrm{n}+\mathrm{r}$.
\forall nat. m, pos.nat. n.
(Э int $q, r . q \geqslant 0,0 \leq r<n, m=q \cdot n+r$)
$八$

$$
\left[\begin{array}{c}
\forall q!q!r, r!, q, q^{\prime} \geqslant 0,0 \leq r, r^{\prime}<n, \\
m=q \cdot n+r \wedge m=q!-n+r! \\
\Rightarrow(q=q!\wedge r=-15)
\end{array}\right] \text { Uniqueness. }
$$

Uniquenes
Assume nal: m, pos.nat. n.
A ssume $q: q!, r, r!, q, q^{\prime} \geqslant 0, \frac{0 \leq r, r^{\prime}<n}{m=0!\cdot n+r!}$

$$
m=q \cdot n+r_{1}^{1} \wedge \quad m=q \cdot \cdot n \cdot+r!
$$

RTp: $q=q^{\prime} \wedge r=r^{\prime}$
From (1) and (2) $(q-q!) n=r^{\prime}-r$
Case (i): Suppere $r^{-1} \geqslant r$. So That $r^{\prime}-r$ is a netural..
That by (3) is <n, ad by (4) in a multiple of n. There fore $q-q^{\prime}=0$ and hence $q=q$!.
$q \cdot n+r=m=q \cdot n+r!$
As $q=q$!
By cancellation, $r=r!$.
Case $r \geqslant r^{\prime}$: Consider $\left(q^{!}-q\right) \cdot n=r-r^{\prime}$ and priced analogously.

The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number m and positive natural number n , there exists a unique pair of integers q and r such that $\mathrm{q} \geq 0,0 \leq \mathrm{r}<\mathrm{n}$, and $\mathrm{m}=\mathrm{q} \cdot \mathrm{n}+\mathrm{r}$.

Definition 44 The natural numbers q and r associated to a given pair of a natural number m and a positive integer n determined by the Division Theorem are respectively denoted quo (m, n) and $\operatorname{rem}(\mathfrak{m}, \mathfrak{n})$.

Proof of Theorem 43:

$$
\begin{aligned}
& \text { divalg }(m, n) \\
& \text { diviter }(0, m) \\
& m<n . \\
& (0, m) \quad \text { diviter }(1, m-n) \\
& m-n<n / \\
& (1, m-n) \\
& m-2 n<n / 2, m-2 n)
\end{aligned}
$$

Partial Correctuess

If the conpertation terminates in step k. Then

$$
m=q_{R}-n+r_{R} \text { and } r_{k}<n
$$

Tote correctness: We need show the algorithm terminates. At each call of darter (q, r) eitur $r<n$ an weare dove or we have a call diverter $(q+1, r-n)$ with smaller, but positive, second argument.

The Division Algorithm in ML:


```
fun divalg( m , n )
    = let
        fun diviter( q , r )
            = if r < n then ( q , r )
                else diviter( q+1 , r-n )
    in
        diviter( 0 , m )
    end
                    0\leqslantq,0\leqr<n
                    m=q\cdotn+r
fun quo( m , n ) = #1( divalg(m, n ) )
fun rem( m , n ) = #2( divalg(m, n ) )

Theorem 45 For every natural number \(m\) and positive natural number \(n\), the evaluation of divalg \((m, n)\) terminates, outputing a pair of natural numbers \(\left(q_{0}, r_{0}\right)\) such that \(r_{0}<n\) and \(m=q_{0} \cdot n+r_{0}\).

Proof:
\[
k=\text { gov. }(k, m) \cdot m+\text { rem }(k, m)
\]

Proposition 46 Let \(m\) be a positive integer. For all natural numbers k and l ,
\[
l=\rho_{n \sigma}\left(l_{1} m\right) \cdot m+\operatorname{rem}_{l}\left(l_{1} m\right)
\]
\[
k \equiv l(\bmod \mathfrak{m}) \Longleftrightarrow \operatorname{rem}(k, \mathfrak{m})=\operatorname{rem}(l, \mathfrak{m}) .
\]

Proof: Let \(m\) be a positive ute ger Let \(k, l\) be nat.
\((\Longleftarrow)\) Easy.
\(\Rightarrow\) Assume \(k-l=i . m\) for some i int.
\[
(\text { quo }(R, n)-\text { quo }(l, m)) \cdot m+(\operatorname{rem}(k, m)-\operatorname{rem}(l, m))
\]

Then \(\operatorname{rem}(k, m)-\operatorname{rem}(l, m)=0\)
So \(\operatorname{rem}(k, m)=\operatorname{rem}(l, m)\).

Corollary 47 Let \(m\) be a positive integer.
1. For every natural number \(n\),
\[
\mathfrak{n} \equiv \operatorname{rem}(n, \mathfrak{m}) \quad(\bmod \mathfrak{m})
\]

Since
\[
n=\text { quo }(n, m) \cdot m+\text { en }(n, m)
\]
we have \(n\)-rem \((n, m)\) is a multiple of \(m\). Proof:

Corollary 47 Let m be a positive integer.
1. For every natural number \(n\),
\[
\mathfrak{n} \equiv \operatorname{rem}(n, m) \quad(\bmod m)
\]
2. For every integer k there exists a unique integer \([\mathrm{k}]_{\mathrm{m}}\) such that
\[
0 \leq[k]_{\mathfrak{m}}<\mathfrak{m} \quad \text { and } k \equiv[k]_{\mathfrak{m}} \quad(\bmod m) .
\]

\section*{Proof:}
```

