Negation

Negations are statements of the form

or, in other words,

or

or

or, in symbols,

not P

P is not the case

P is absurd

P leads to contradiction
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A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent
form and use instead this other statement.

Logical equivalences

-(P=Q)
(P<:>Q)

~(vx

(P/\

(Hx P(x

-(PV Q

~(=

(x))
Q)
)
)
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—P
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P<— —Q
Ix. —=P(x)
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Theorem 37 For all statements P and Q,

(P = Q) = [7Q = —P) .

PROOF: Lur P ad A e gmmg

A sumt ¥R
Assuwd Q= fole (&4)

/[Luc}w, 02) fﬂ% (& 7P)

— 126 —



Proof by contradiction

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent
statement —P — false

Proof pattern:
In order to prove

P

1. Write: We use proof by contradiction. So, suppose

P is false.
2. Deduce a logical contradiction.

3. Write: This is a contradiction. Therefore, P must

be true.
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Scratch work:

Before using the strategy
Assumptions Goal

After using the strategy
Assumptions Goal

contradiction

— 132 —



Theorem 39 For all statements P and Q,

(—Q = —P) = (P = Q) .
PROOF: /ot~ P oud & be (R .
Asgumeg 28=272P (1)
Asgue P (=)

(e a
B, comhadzbide, dssume 1R (3)

From (3] oud G) , 1wt heve 2P ()
Frow (&) sd (1), nt dhhin o e o

%ﬁhegw, B
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Lemma 41 A positive real number x is rational iff

1 positive integers m,n :
x=m/n A =(3primep: plm Apln)

PROOF: /4~ 7. be & )aosl\m re . nusmbor
<§:) \fé AT Tﬁ'\/fa\(-:: STfaig/ﬁffwwofaA:. Eé&\o:_-..,
(=) Assumt T 8 yakM:W&f'k,

Ja, bl x=8/, . )

sy &w) o ek
LoN& & p— : M

% \ cwl m . L="h T
A me: T _9 sl M, "/l(ﬁ”‘““f‘“wr(h)

—

(1)
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Numbers
Objectives

Get an appreciation for the abstract notion of number system,
considering four examples: natural numbers, integers,
rationals, and modular integers.

Prove the correctness of three basic algorithms in the theory of
numbers: the division algorithm, Euclid’s algorithm, and the
Extended Euclid’s algorithm.

Exemplify the use of the mathematical theory surrounding
Euclid’s Theorem and Fermat’s Little Theorem in the context of
public-key cryptography.

To understand and be able to proficiently use the Principle of
Mathematical Induction in.its yarious forms.



Natural numbers

In the beginning there were the natural numbers

N : 0, T, ..., n, n+1l,
generated from zero by successive increment; that is, put in ML.:

datatype

N = zero | succ of N
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The basic operations of this number system are:

—_—
» Addition
m n
/_/\r -\ N\
ik e o o >|< >|< ...... >E
mtn
» Multiplication
n
om "
m m-n
* ............ >|<
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The additive structure (N, 0 +) of natural numbers with zero and

addition satisfies the following: e 54“%76
» Monoid laws /

O+4n=n=n+0, (l+mM)+n=14+(m+n)

» Commutativity law

m+-n=n-+m

and as such is what in the mathematical jargon is referred to as
a commutative monoid.
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Also the multiplicative structure (N, 1, -) of natural numbers with one
and multiplication is a commutative monoid:

» Monoid laws

Il'n=n=n-1, (I-m)-n=1-(m-n)

» Commutativity law

m-nm=n-m
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The additive and multiplicative structures interact nicely in that they
satisfy the

» Distributive law

l-(m+n) = Il-m+1-n

and make the overall structure (N, 0, -+, 1, -) into what in the mathe-
matical jargon is referred to as a commutative semiring.
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Cancellation

The additive and multiplicative structures of natural numbers further
satisfy the following laws.
» Additive cancellation

For all natural numbers k, m, n,
kK+m=k+n = m=n

» Multiplicative cancellation

For all natural numbers k, m, n,
fk#A0thenk-m=k-n = m=n
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Inverses

Definition 42

1. A number x is said to admit an additive inverse whenever there
exists a numbery such that x +y = 0.

2. A number x Is said to admit a multiplicative inverse whenever
there exists a numbery such thatx -y = 1.
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Extending the system of natural numbers to: (i) admit all additive
iInverses and then (ii) also admit all multiplicative inverses for non-
zero numbers yields two very interesting results:

(1) the integers

Zi v ...—my ..., —1,0, 1, ..., n, ...

which then form what in the mathematical jargon is referred to
as a commutative ring, and

(il) the rationals Q@ which then form what in the mathematical jargon
Is referred to as a field.
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The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number m and
positive natural number n, there exists a unique pair of integers q
andr suchthatq > 0,0 <r<n,andm=q-n+r.
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