## Negation

Negations are statements of the form
not P
or, in other words,

$$
\mathrm{P} \text { is not the case }
$$

or
$P$ is absurd
or

> P leads to contradiction
or, in symbols,

$$
\begin{array}{r}
\square \neg \mathrm{P} \\
-124-
\end{array}
$$

## A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent form and use instead this other statement.

## Logical equivalences

$$
\begin{aligned}
& \neg(\mathrm{P} \Longrightarrow \mathrm{Q}) \Longleftrightarrow \mathrm{P} \wedge \neg \mathrm{Q} \\
& \neg(\mathrm{P} \Longleftrightarrow \mathrm{Q}) \Longleftrightarrow \mathrm{P} \Longleftrightarrow \neg \mathrm{Q} \\
& \neg(\forall \mathrm{x} \cdot \mathrm{P}(\mathrm{x})) \Longleftrightarrow \exists \mathrm{x} \cdot \neg \mathrm{P}(\mathrm{x}) \\
& \neg(\mathrm{P} \wedge \mathrm{Q}) \Longleftrightarrow(\neg \mathrm{P}) \vee(\neg \mathrm{Q}) \\
& \neg(\exists \mathrm{x} \cdot \mathrm{P}(\mathrm{x}))\Longleftrightarrow \overrightarrow{\mathrm{P}}) \\
& \neg \mathrm{P}(\mathrm{x}) \\
& \neg(\mathrm{P} \vee \mathrm{Q}) \Longleftrightarrow \\
& \neg(\neg \mathrm{P}) \Longleftrightarrow(\neg \mathrm{P}) \wedge(\neg \mathrm{Q}) \\
& \neg \mathrm{P} \Longleftrightarrow \mathrm{P} \\
& \Longleftrightarrow(\mathrm{P} \Rightarrow \text { false }) \\
&-\mathbf{1 2 5}
\end{aligned}
$$

Theorem 37 For all statements P and Q ,

$$
(\mathrm{P} \Longrightarrow \mathrm{Q}) \Longrightarrow(\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P})
$$

Proof: Let $P$ and $Q$ be shetiments
As sumer $P \Rightarrow Q$
Assume $Q \Rightarrow$ false $(\Leftrightarrow \neg Q)$
Therefore $P \Rightarrow$ false $(\Leftrightarrow \neg P)$

## Proof by contradiction

## The strategy for proof by contradiction:

To prove a goal $P$ by contradiction is to prove the equivalent statement $\neg \mathrm{P} \Longrightarrow$ false

## Proof pattern:

In order to prove
P

1. Write: We use proof by contradiction. So, suppose P is false.
2. Deduce a logical contradiction.
3. Write: This is a contradiction. Therefore, P must be true.

## Scratch work:

Before using the strategy

Assumptions
Goal
P

After using the strategy

## Assumptions

contradiction
$\neg \mathrm{P}$

Theorem 39 For all statements P and Q ,

$$
(\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P}) \Longrightarrow(\mathrm{P} \Longrightarrow \mathrm{Q})
$$

Proof: Let $P$ and $Q$ be statements.
Assume $\quad 2 Q \Rightarrow 2 P$
Assure $P$
RIP: $Q$
By contradiction, assume $7 Q$ (3)
From (3) and (1), we hare $7 P(4)$
From (2.) and (4), we obtain a coutradzation.
Therefore $Q$ holds.

Lemma 41 A positive real number x is rational iff $\exists$ positive integers $m, n$ :
$x=m / n \wedge \neg(\exists$ prime $p: p|m \wedge p| n)$
PROOF: Let $x$ be a positive real number.
$(\Leftrightarrow) V_{a}$ cons. $=$ Trivia $=$ Straight for we $d=$ Easy $=\ldots$
$(\Rightarrow)$ Assume $a$ is rational. That is,

$$
\exists a, b \text { int } x=a / b \text {. }
$$

RTP: (f)
By contradichon,
Assume: $\neg^{\prime}[\exists$ posimt $m, n . ~ x=m / n$

$$
\begin{aligned}
& x=m / n \\
& \wedge \neg(\exists \mu i m e p \cdot p(m, \mu p(n)]
\end{aligned}
$$

Equivalutly.

$$
(P \Rightarrow Q) \Leftrightarrow(\tau P \vee Q)
$$

Assume: $\forall$ pos.int. $m, n$.

$$
x=m / n \Rightarrow \text { urine } p \cdot p|m \wedge p| n .
$$

Let $a_{11}$, bo be, ouch that $x=a_{0} / b_{0}$ (using assumption(\#)) posing.
By instantiation and MP,
Jprive $p_{0} \cdot p_{0}\left|a_{0} \wedge p_{0}\right| b_{0}$
There fire $\exists a_{1}, b_{1}$ po. nit. $\quad a_{0}=p_{0} a_{1} \wedge \quad b_{0}=p_{0} b_{1}$
More over $x=a_{0} / b_{0}=p_{0} a_{1} / p_{0} b_{1}=a_{1} / b_{1}$

There fore
$\exists p_{1}$ prime $p_{1} \mid a_{1}$ a $p_{2} \mid b_{1}$
Again.

$$
\exists a_{2,}, b_{2} \cdot a_{1}=p_{1} \cdot a_{2} \wedge b_{1}=p_{1} \cdot b_{2}
$$

So $\quad x=a_{1} / b_{1}=p_{1} \cdot a_{2} / p_{1} \cdot b_{2}=a_{2} / b_{2}$
NB:

$$
\begin{aligned}
& a_{0}=p_{0} \cdot a_{1}=p_{0} \cdot p_{1} \cdot a_{2} \\
& b_{0}=p_{0} \cdot b_{1}=p_{0} \cdot p_{1} \cdot b_{2}
\end{aligned}
$$

Itiratif The argument:

$$
\begin{aligned}
a_{0} & =p_{0} \cdot a_{1}=p_{0} \cdot p_{1} \cdot a_{2}=p_{0} \cdot p_{1} \cdot p_{2} \cdot a_{3} \\
& =p_{0} \cdot p_{1} \cdot p_{2} \cdots p_{n} \cdot q_{h+1} \geqslant 2^{n} \cdot q_{n+1}
\end{aligned}
$$

For arbitrary $n$, we hare $a_{0} \geqslant 2^{n}$
In particular for $r=0.0, \quad a_{0} \geqslant 2^{a_{0}}$
a contradiction.

## Numbers Objectives

- Get an appreciation for the abstract notion of number system, considering four examples: natural numbers, integers, rationals, and modular integers.
- Prove the correctness of three basic algorithms in the theory of numbers: the division algorithm, Euclid's algorithm, and the Extended Euclid's algorithm.
- Exemplify the use of the mathematical theory surrounding Euclid's Theorem and Fermat's Little Theorem in the context of public-key cryptography.
- To understand and be able to proficiently use the Principle of Mathematical Induction in its yarious forms.


## Natural numbers

In the beginning there were the natural numbers

$$
\mathbb{N}: 0,1, \ldots, n, n+1, \ldots
$$

generated from zero by successive increment; that is, put in ML:

```
datatype
    N = zero | succ of N
```

The basic operations of this number system are:


- Addition

- Multiplication

$$
m\left\{\begin{array}{l}
\overbrace{* \cdots}^{n} \\
\vdots \vdots \cdots \cdots \cdots \\
* \cdots \cdots
\end{array}\right.
$$

## neutral element operation

The additive structure ( $\mathbb{N}, 0,+$ ) of natural numbers with zero and addition satisfies the following:

- Monoid laws

$$
0+n=n=n+0, \quad(l+m)+n=l+(m+n)
$$

- Commutativity law

$$
\mathrm{m}+\mathrm{n}=\mathrm{n}+\mathrm{m}
$$

and as such is what in the mathematical jargon is referred to as a commutative monoid.

Also the multiplicative structure $(\mathbb{N}, 1, \cdot)$ of natural numbers with one and multiplication is a commutative monoid:

- Monoid laws

$$
1 \cdot \mathrm{n}=\mathrm{n}=\mathrm{n} \cdot 1, \quad(\mathrm{l} \cdot \mathrm{~m}) \cdot \mathrm{n}=\mathrm{l} \cdot(\mathrm{~m} \cdot \mathrm{n})
$$

- Commutativity law

$$
\mathrm{m} \cdot \mathrm{n}=\mathrm{n} \cdot \mathrm{~m}
$$

The additive and multiplicative structures interact nicely in that they satisfy the

- Distributive law

and make the overall structure $(\mathbb{N}, 0,+, 1, \cdot)$ into what in the mathematical jargon is referred to as a commutative semiring.


## Cancellation

The additive and multiplicative structures of natural numbers further satisfy the following laws.

- Additive cancellation

For all natural numbers $k, m, n$,

$$
\mathrm{k}+\mathrm{m}=\mathrm{k}+\mathrm{n} \Longrightarrow \mathrm{~m}=\mathrm{n}
$$

- Multiplicative cancellation

For all natural numbers $k, m, n$,
if $k \neq 0$ then $k \cdot m=k \cdot n \Longrightarrow m=n$.

## Inverses

## Definition 42

1. A number $x$ is said to admit an additive inverse whenever there exists a number $y$ such that $x+y=0$.
2. A number $x$ is said to admit a multiplicative inverse whenever there exists a number $y$ such that $x \cdot y=1$.

Extending the system of natural numbers to: (i) admit all additive inverses and then (ii) also admit all multiplicative inverses for nonzero numbers yields two very interesting results:
(i) the integers

$$
\mathbb{Z}: \ldots-n, \ldots,-1,0,1, \ldots, n, \ldots
$$

which then form what in the mathematical jargon is referred to as a commutative ring, and
(ii) the rationals $\mathbb{Q}$ which then form what in the mathematical jargon is referred to as a field.

## The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number $m$ and positive natural number $n$, there exists a unique pair of integers $q$ and r such that $\mathrm{q} \geq 0,0 \leq \mathrm{r}<\mathrm{n}$, and $\mathrm{m}=\mathrm{q} \cdot \mathrm{n}+\mathrm{r}$.



