Spot the mistake
Claim
\forall positive integers l, m, n.

$$
(m|l \wedge n| l) \Rightarrow m=n
$$

Argument
Let l, m, n be positive integers.
Assume: (1) \exists int $i . l=m \cdot i$ and (2) \exists int $i . l=n$. i From (1) we have (3) $l=m$. i for i an integer That is positive because both l and m are. From (2) we hare. (4) $l=n \cdot i$. Therefore, from (3) and (4), $m \cdot i=n \cdot i$; and, as i is positive, $m=n$.

The core of The argument gives a proof of \forall positive integers l, m, n.
(int $i \cdot l=m \cdot i) \wedge(\forall \operatorname{int} j \cdot l=n \cdot j)$

$$
\Rightarrow m=n
$$

Disjunction

Disjunctive statements are of the form
P or Q
or, in other words,

> either P, Q, or both hold
or, in symbols,

The main proof strategy for disjunction:

To prove a goal of the form

$$
P \vee Q
$$

you may

1. try to prove P (if you succeed, then you are done); or
2. try to prove Q (if you succeed, then you are done); otherwise
3. break your proof into cases; proving, in each case, either P or Q.

Proposition 25 For all integers n, either $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$.
Proof: Let n be an arbitrary integer.
RIP: $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\operatorname{mrd} 4)$
(1) Let's show $n^{2} \equiv 0(\bmod 4)$
(2) Let's show $n^{2} \equiv 1$ (mad 4)

Consider the following case. (i) n even; (ii) n odd.
Case (i) Assume n even. Then $n=2 k$ for some $\bar{u} t \cdot k$ So $n^{2}=4 k^{2}$ and tire -fore $n \equiv 0(\bmod 4)$.
Case (ii): Assume n odd. Then $n=2 k+1$ for an int. k So $n^{2}=(2 R+1)^{2}=4 k^{2}+4 k+1$ and therefore $n \equiv 1\left(\omega_{2} d+100\right.$.

Assm.ption.s

$$
P_{1} \vee P_{2} \sim u s e ?
$$

The use of disjunction:
To use a disjunctive assumption

$$
P_{1} \vee P_{2}
$$

to establish a goal Q , consider the following two cases in turn: (i) assume P_{1} to establish Q, and (ii) assume P_{2} to establish Q.

Scratch work:

Before using the strategy

Assumptions
 Goal

Q

$$
P_{1} \vee P_{2}
$$

After using the strategy

Assumptions	Goal	Assumptions	Goal
\vdots	Q		Q
P_{1}		\vdots	
		P_{2}	

Proof pattern:

In order to prove Q from some assumptions amongst which there is

$$
P_{1} \vee P_{2}
$$

write: We prove the following two cases in turn: (i) that assuming P_{1}, we have Q ; and ($\mathfrak{i i}$) that assuming P_{2}, we have Q . Case (\mathfrak{i}): Assume P_{1}. and provide a proof of Q from it and the other assumptions. Case (ii): Assume P_{2}. and provide a proof of Q from it and the other assumptions.

Font .n

$$
\begin{aligned}
& (n \text { even } \vee n \text { odd }) \\
\Rightarrow & \left(n^{2} \equiv 0(\bmod .4) \vee n^{2} \equiv 1(\operatorname{msd} 4)\right)
\end{aligned}
$$

$$
\text { A little arithmetic }\binom{p}{m}=\frac{p!}{m!(p-m)!}
$$

Lemma 27 For all positive integers p and natural numbers m, if $\mathrm{m}=0$ or $\mathrm{m}=\mathrm{p}$ then $\binom{\mathrm{p}}{\mathrm{m}} \equiv 1(\bmod \mathrm{p})$.
Proof: Let p be a positive integer and ma nature. number.
Assume: $m=0 \vee m=p$
RIP: $\binom{p}{m} \equiv 1(\operatorname{mid} p)$

Assume $m=0$
Then $\binom{p}{m}=-1$
Hence we are dol.

Assume $m=p$

$$
T \operatorname{hen}\binom{p}{m}=1
$$

Hence we are done

Lemma 28 For all integers p and m, if p is prime and $0<m<p$ then $\binom{p}{m} \equiv 0(\bmod p)$.

Proof:

$$
\binom{p}{m}=\frac{p!}{m!(p-m)!}=p \cdot[\underbrace{\frac{(p-1)!}{m!(p-m)!}}_{\begin{array}{c}
\text { is it an } \\
\text { integer ? }
\end{array}}]
$$

$$
m!(p-m)!\binom{p}{m}=p \cdot(p-1)!
$$

Proposition 29 For all prime numbers p and integers $0 \leq m \leq p$, either $\binom{p}{m} \equiv 0(\bmod p)$ or $\binom{p}{m} \equiv 1(\bmod p)$.
Proof: Let p be a prime and m an integer such that $0 \leq m \leq p$.
Case 1: $m=0$ or $m=p$
Then we hare shown $\binom{p}{m} \equiv 1($ nod $p)$ ad we are dome.
Case $20<m<p$
Then we hare shown $\binom{p}{m} \equiv 0(\bmod p)$ add. we are done..

A little more arithmetic
Corollary 33 (The Freshman's Dream) For all natural numbers m, n and primes p ,

$$
(\mathfrak{m}+\mathfrak{n})^{\mathfrak{p}} \equiv \mathfrak{m}^{p}+\mathfrak{n}^{p}(\bmod \mathfrak{p}) .
$$

Proof: Let m and n be natural neubery, and let p be a prime.
RIP: $(m+n)^{p}-\left(m^{p}+n^{p}\right)$ is a multiple of p

$$
\begin{aligned}
& \sum_{i=0}^{p}\binom{P_{i}^{l}}{i} m^{i} n^{p-i}-m^{p}-n^{p}=\sum_{i=1}^{p-1}\binom{p}{i} m^{i} n^{p-i} \\
& \text { Since }\binom{p}{i} \equiv 0(\operatorname{mrdp}) \forall 1 \leq i \leq p-1 \text { Then } \sim \|_{0}^{(m a d p)} \\
& (116-\quad
\end{aligned}
$$

Corollary 34 (The Dropout Lemma) For all natural numbers m and primes p,

$$
(m+1)^{p} \equiv m^{p}+1(\bmod p)
$$

Proposition 35 (The Many Dropout Lemma) For all natural numbbers m and i, and primes p,

$$
(\mathfrak{m}+\mathfrak{i})^{p} \equiv \mathfrak{m}^{p}+i(\bmod p)
$$

PROOF: $(m+i)^{p}$ ether $i=0 \quad(m+i)^{p}=m^{p}=m^{p}+i$

$$
\text { otic. }(m+i)^{p}=(m+(i-1)+1)^{P}
$$

$$
\equiv(m+i-1)^{p}+1 \quad(m d p)
$$

$$
i>1 \sim(m+i-2)^{R}+2(\text { mod } p)
$$

The Many Dropout Lemma (Proposition 35) gives the fist part of the following very important theorem as a corollary.
Furbantiale the many drop out le mun for $m=0$.
Theorem 36 (Fermat's Little Theorem) For all natural numbers i and primes p ,

$$
\text { " } i^{p}-i=p \cdot k \text { for some iit.k }
$$

(1. $i^{p} \equiv i(\bmod p)$, and

$$
\left(i^{p-1}-1\right) \cdot i
$$

2. $\mathfrak{i}^{p-1} \equiv 1(\bmod p)$ whenever i is not a multiple of p.

$$
\forall i \cdot\left(i p^{-2}\right) \equiv 1(\operatorname{mrd} p)
$$

The fact that the first part of Fermat's Little Theorem implies the second one will be proved later on .

Btw

1. Fermat's Little Theorem has applications to:
(a) primality testing ${ }^{\text {a }}$,
(b) the verification of floating-point algorithms, and
(c) cryptographic security.
[^0]
[^0]: ${ }^{\text {a }}$ For instance, to establish that a positive integer m is not prime one may proceed to find an integer i such that $i^{m} \not \equiv i(\bmod m)$.

