Disjunction

Disjunctive statements are of the form

or, in other words,

either P, Q, or both hold

or, in symbols,

$$P \lor Q$$

The main proof strategy for disjunction:

To prove a goal of the form

 $P \lor Q$

you may

- 1. try to prove P (if you succeed, then you are done); or
- try to prove Q (if you succeed, then you are done);
 otherwise
- 3. break your proof into cases; proving, in each case, either P or Q.

Proposition 25 For all integers n, either $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$.

PROOF: Let n be en arbitrarg integer. $RTP: n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$ (1) Let's show h = O (mod 4) X (2) Let's show $n^2 \equiv 1 \pmod{4} \times$ Consider The following less (i) n even; (ii) node Consider The following less (i) n even; (ii) node Cost (i) Assume n even. Then n=2k for some int kCost (i) $So h^2 = 4k^2$ and there for n=0 (md4). Case (Di): Assume n odd. Then n=2k+1 for an int.k So n² = (2.R.H)² = 4 R² + 4 R.H and Therefore n=1 (m,d 4).

Assuptions PavP2 nee?

Gool Q

The use of disjunction:

To use a disjunctive assumption

$P_1 ~\lor~ P_2$

to establish a goal Q, consider the following two cases in turn: (i) assume P_1 to establish Q, and (ii) assume P_2 to establish Q.

Before using the strategy

Assumptions Goal Q .

 $P_1 \vee P_2$

After using the strategyAssumptionsGoalAssumptionsGoalQQQ \vdots \vdots \vdots P1P2

Proof pattern:

In order to prove Q from some assumptions amongst which there is

$P_1 ~\lor~ P_2$

write: We prove the following two cases in turn: (i) that assuming P_1 , we have Q; and (ii) that assuming P_2 , we have Q. Case (i): Assume P_1 . and provide a proof of Q from it and the other assumptions. Case (ii): Assume P_2 . and provide a proof of Q from it and the other assumptions.

Vint.n (n even v n odd) $\Rightarrow \left(n^2 = 0 \pmod{4} \vee n^2 = 1 \pmod{4}\right)$

A little arithmetic
$$\binom{p}{m} = \frac{p!}{m!(p-m)!}$$

Lemma 27 For all positive integers p and natural numbers m, if
 $m = 0 \text{ or } m = p \text{ then } \binom{p}{m} \equiv 1 \pmod{p}.$
PROOF: Let p be a portire integer and mainstand
number.
Assume: $m=0 \lor m=p$
RTP: $\binom{p}{m} \equiv 1 \pmod{p}$
Assume $m=0 \lor m=p$
Then $\binom{p}{m} = 1$
Hence $m=2$
Hence $m=2$ then $\binom{p}{m} = 1$

Lemma 28 For all integers p and m, if p is prime and 0 < m < pthen $\binom{p}{m} \equiv 0 \pmod{p}$.

PROOF:

$$\begin{pmatrix} P \\ m \end{pmatrix} = \frac{p!}{m!(p-m)!} = P \cdot \begin{bmatrix} (p-i)! \\ m!(p-m)! \end{bmatrix}$$
is it on
integer ?

$$m!(p-m)! \begin{pmatrix} P \\ m \end{pmatrix} = P \cdot (p-i)!$$

-111 -

Proposition 29 For all prime numbers p and integers $0 \le m \le p$, either $\binom{p}{m} \equiv 0 \pmod{p}$ or $\binom{p}{m} \equiv 1 \pmod{p}$. PROOF: Let p be a prime and m on integer such that OSMSp. Case 1: m=0 or m=pThen we have shown $(m) \equiv l(mod p)$ ad me are done. Then we have shown (m)=0 (modp) Case 2 04 m. 4p and we are done.

A little more arithmetic

Corollary 33 (The Freshman's Dream) For all natural numbers m, n and primes p,

 $(m+n)^p \equiv m^p + n^p \pmod{p}$.

PROOF: Let mand n. be natural numbers, and let pbe a prine. RTP: (m+n)^P-(mP+nP) is a methode of p $\sum_{i=1}^{p} \binom{p}{i} m^{i} n^{p-i} - m^{p} - n^{p} = \sum_{i=1}^{p-i} \binom{p}{i} m^{i} n^{p-i}$ Since $\binom{p}{i} \equiv 0 \pmod{p}$ $\forall 1 \leq i \leq p-1$ Then $\longrightarrow (mdp)$ 116

Corollary 34 (The Dropout Lemma) For all natural numbers m and primes p,

$$(m+1)^p \equiv m^p + 1 \pmod{p}$$
.

Proposition 35 (The Many Dropout Lemma) For all natural numbers m and i, and primes p,

The Many Dropout Lemma (Proposition 35) gives the fist part of the following very important theorem as a corollary.

Instantisle the many dropout le mui for m=0. Theorem 36 (Fermat's Little Theorem) For all natural numbers i "il-i=p.k. for some int.k and primes p, 1. $i^p \equiv i \pmod{p}$, and $(i^p - 1)$. 2. $i^{p-1} \equiv 1 \pmod{p}$ whenever i is not a multiple of p. $i \cdot (i P^{-2}) = 1 \pmod{p}$ The fact that the first part of Fermat's Little Theorem implies the second one will be proved later on .

Btw

- 1. Fermat's Little Theorem has applications to:
 - (a) primality testing^a,
 - (b) the verification of floating-point algorithms, and
 - (c) cryptographic security.

^aFor instance, to establish that a positive integer \mathfrak{m} is not prime one may proceed to find an integer \mathfrak{i} such that $\mathfrak{i}^{\mathfrak{m}} \not\equiv \mathfrak{i} \pmod{\mathfrak{m}}$.