Conjunction

Conjunctive statements are of the form
P and Q
or, in other words,
both P and also Q hold
or, in symbols,

$$
\mathrm{P} \wedge \mathrm{Q} \quad \text { or } \quad \mathrm{P} \& \mathrm{Q}
$$

The proof strategy for conjunction:

To prove a goal of the form

$$
P \wedge Q
$$

first prove P and subsequently prove Q (or vice versa).

Proof pattern:

In order to prove

$$
P \wedge Q
$$

1. Write: Firstly, we prove P. and provide a proof of P.
2. Write: Secondly, we prove Q . and provide a proof of Q .

Scratch work:

Before using the strategy

Assumptions Goal

$$
P \wedge Q
$$

After using the strategy

Assumptions	Goal	Assumptions	Goal
	P		Q
\vdots		\vdots	

Assumptions	Cool
$A \times B$	Q
A	B

The use of conjunctions:
To use an assumption of the form $\mathrm{P} \wedge \mathrm{Q}$, treat it as two separate assumptions: P and Q .

Theorem 20 For every integer n, we have that $6 \mid n$ iff $2 \mid n$ and $3 \mid n$.
Proof: Let n be an arbiNary-wteger.
$(\Rightarrow) 6 \ln$ Then $(2 \ln$ and $3 \ln)$
Assume Gin, tint is $n=6 \mathrm{k}$ for int. k
RIP: $2 \ln$ and $3 \mid n$

RIP 1: 2 ln
$n=2(3 k)$
So $2 \cdot n$

RIP $2: 3 \mid n$
$n=3(2 n)$
So. $31 n$.
$(5)(2 \ln$ and $3 / n)$ then $6 / n$
Assume: $2 \ln$ and $3 / n$
So $21 n$ i.e.: $n=2 i$
(inti)
RTP: $6 / n$
So $3 \ln$ i.e. $n=3 j$
i.e. $n=6 \mathrm{R}$ for sime int R. (int-j) equirchety $n=2.3 . \mathrm{K}$ for some的T. k
So $\quad 3 n=3.2 i=6 i$
2lso $2 n=2 \cdot 3 \cdot j=6 j$
There fre $n=3 n-2 n=6 i-6 j=6(i-j)$. and neare done.

$$
6 \ln \Leftrightarrow(2 \ln \& 3 \ln)
$$

$30 \ln \Leftrightarrow(2 \ln \& 3 \ln \& 5 \ln) ?$
and Ther fuerdisatious?

$$
12 \mid n \Leftrightarrow \cdots ?
$$

Existential quantification

Existential statements are of the form
there exists an individual x in the universe of discourse for which the property $\mathrm{P}(\mathrm{x})$ holds
or, in other words,
for some individual x in the universe of discourse, the property $\mathrm{P}(\mathrm{x})$ holds
or, in symbols,

Example: The Pigeonhole Principle.
Let n be a positive integer. If $n+1$ letters are put in n pigeonholes then there will be a pigeonhole with more than one letter.

Theorem 21 (Intermediate value theorem) Let f be a real-valued continuous function on an interval $[\mathrm{a}, \mathrm{b}]$. For every y in between $\mathrm{f}(\mathrm{a})$ and $\mathrm{f}(\mathrm{b})$, there exists v in between a and b such that $\mathrm{f}(v)=\mathrm{y}$.

Intuition:

The main proof strategy for existential statements:

To prove a goal of the form

$$
\exists x . P(x)
$$

find a witness for the existential statement; that is, a value of x, say w, for which you think $P(x)$ will be true, and show that indeed $P(w)$, i.e. the predicate $P(x)$ instantiated with the value w, holds.

Proof pattern:

In order to prove

$$
\exists x . P(x)
$$

1. Write: Let $w=\ldots$ (the witness you decided on).
2. Provide a proof of $\mathrm{P}(w)$.

Scratch work:

Before using the strategy

Assumptions

Goal
$\exists x . P(x)$

After using the strategy
Assumptions
Goals
$P(w)$
$w=\ldots$ (the witness you decided on)
$-88-$

Proposition 22 For every positive integer k, there exist natural numbers i and j such that $4 \cdot k=i^{2}-j^{2}$.
Proof: Let R be an arbilary integer.
RIP: \exists not. numbers i and $j . \quad 4 k=i^{2}-j^{2}$.
Consider $i=k+1$ and $j=k-1$

k	i	j	There for $i^{2}-j^{2}=\cdots \cdots$
1	2	0	11
2	3	1	$(k+1)^{2}-(k-1)^{2}=\cdots$
3	4	32	
n	$n+1$	$n-1$	- guess!

Assm.ptions
$\exists x \cdot P(x)$
Let x_{0} be such. $P\left(x_{0}\right)$ holds.
The use of existential statements:
To use an assumption of the form $\exists x . P(x)$, introduce a new variable x_{0} into the proof to stand for some individual for which the property $P(x)$ holds. This means that you can now assume $P\left(x_{0}\right)$ true.

Theorem 24 For all integers l, m, n, if $l \mid m$ and $m \mid n$ then $l \mid n$.
Proof: Let l, m, n be integers.
Assume l, m, That in, Fiat. $l, i=m$. ${ }^{(1)}$ m / n; That $n, \exists j$ int. $m-j=n^{(2)}$
R7P: l.|n; That is, skint. $l . k=n$
Let io int. sud That $l . i_{0}=m$ (from)
Let joint. such that m. $j 0=n$ (from (2))
Let $w=i_{0} . j_{0}$. Then $l \cdot w=l . i_{0} \cdot j_{0}=m \cdot j_{0}=n$

Unique existence

The notation

$$
\exists!x . P(x)
$$

stands for
the unique existence of an x for which the property $P(x)$ holds .

That is,

$$
\exists x . \mathrm{P}(\mathrm{x}) \wedge(\forall \mathrm{y} . \forall z \cdot(\mathrm{P}(\mathrm{y}) \wedge \mathrm{P}(z)) \Longrightarrow \mathrm{y}=\mathrm{z})
$$

