Scratch Proofs.

Assumptions:

\[P = A \Rightarrow B \]

Goal:

\[P \Rightarrow Q \]

Rule for using implications:

Modus Ponens
A main rule of *logical deduction* is that of *Modus Ponens*:

From the statements P and $P \implies Q$, the statement Q follows.

or, in other words,

If P and $P \implies Q$ hold then so does Q.

or, in symbols,

\[
\begin{array}{c}
P \quad P \implies Q \\
\hline
Q
\end{array}
\]
The use of implications:

To use an assumption of the form $P \implies Q$, aim at establishing P.
Once this is done, by Modus Ponens, one can conclude Q and so further assume it.
Theorem 11 Let P_1, P_2, and P_3 be statements. If $P_1 \implies P_2$ and $P_2 \implies P_3$ then $P_1 \implies P_3$.

Proof: P_1, P_2, P_3 statements

1. Assume $P_1 \implies P_2$ and $P_2 \implies P_3$

RTP: $P_1 \implies P_3$

Assume P_1

RTP: P_3

By MP from 1 and 2 we have P_2

By MP from 4 and 2 we have P_3

So we are done.

In practice:

\[
\begin{array}{c}
P_1 \Rightarrow P_2 \Rightarrow P_3 \Rightarrow \cdots \\
\vdots \\
\text{If } P_1 \text{ then } P_n
\end{array}
\]
Some theorems can be written in the form

\[P \text{ is equivalent to } Q \]

or, in other words,

\[P \text{ implies } Q, \text{ and vice versa} \]

or

\[Q \text{ implies } P, \text{ and vice versa} \]

or

\[P \text{ if, and only if, } Q \]

or, in symbols,

\[P \iff Q \]
Proof pattern:
In order to prove that

\[P \iff Q \]

1. Write: (\(\Rightarrow\)) and give a proof of \(P \Rightarrow Q \).
2. Write: (\(\Leftarrow\)) and give a proof of \(Q \Rightarrow P \).
Proposition 12 Suppose that \(n \) is an integer. Then, \(n \) is even iff \(n^2 \) is even.

Proof:

\[(\Rightarrow) \quad n \text{ is even then } n^2 \text{ is even} \]

Assume: \(n \) is even. That is, \(n = 2i \) for some integer \(i \).

RTP: \(n^2 \) is even.

But \(n^2 = 2 \cdot (2i^2) \)

Therefore \(n^2 = 2j \) for an integer \(j (= 2i^2) \).

\[(\Leftarrow) \quad n^2 \text{ is even then } n \text{ even} \]

Assume: \(n^2 \) is even. That is, \(n^2 = 2k \) for an integer \(k \).

RTP: \(n \) is even.
\((\Leftarrow)\) \quad n^2 \text{ even } \Rightarrow n \text{ even}

By contrapositive, show \(n \text{ odd } \Rightarrow n^2 \text{ odd } \)
which is a corollary of the proposition that the product of odd numbers is odd.
Divisibility and congruence

Definition 13 Let \(d \) and \(n \) be integers. We say that \(d \) divides \(n \), and write \(d \mid n \), whenever there is an integer \(k \) such that \(n = k \cdot d \).

Example 14 The statement \(2 \mid 4 \) is true, while \(4 \mid 2 \) is not.

Definition 15 Fix a positive integer \(m \). For integers \(a \) and \(b \), we say that \(a \) is congruent to \(b \) modulo \(m \), and write \(a \equiv b \pmod{m} \), whenever \(m \mid (a - b) \).

Example 16

1. \(18 \equiv 2 \pmod{4} \)
2. \(2 \equiv -2 \pmod{4} \)
3. \(18 \equiv -2 \pmod{4} \)
Proposition 17 For every integer n,

1. n is even if, and only if, $n \equiv 0 \pmod{2}$, and

2. n is odd if, and only if, $n \equiv 1 \pmod{2}$.

Proof:
The use of bi-implications:

To use an assumption of the form $P \iff Q$, use it as two separate assumptions $P \implies Q$ and $Q \implies P$.
Universal quantification

Universal statements are of the form

\textbf{for all} individuals \(x \) of the universe of discourse, the property \(P(x) \) holds

or, in other words,

no matter what individual \(x \) in the universe of discourse one considers, the property \(P(x) \) for it holds

or, in symbols,

\[\forall x. P(x) \]
Example 18

2. For every positive real number x, if x is irrational then so is \sqrt{x}.

3. For every integer n, we have that n is even iff so is n^2.
The main proof strategy for universal statements:

To prove a goal of the form

$$\forall x. P(x)$$

let x stand for an arbitrary individual and prove $P(x)$.
Proof pattern:
In order to prove that

\[\forall x. P(x) \]

1. **Write:** Let \(x \) be an arbitrary individual.

 Warning: Make sure that the variable \(x \) is new (also referred to as fresh) in the proof! If for some reason the variable \(x \) is already being used in the proof to stand for something else, then you must use an unused variable, say \(y \), to stand for the arbitrary individual, and prove \(P(y) \).

2. **Show that** \(P(x) \) **holds.**
Scratch work:

Before using the strategy

Assumptions Goal

\[\forall x. P(x) \]

\[\vdots \]

After using the strategy

Assumptions Goal

\[P(x) \text{ (for a new (or fresh) } x) \]

\[\vdots \]
The use of universal statements:

To use an assumption of the form $\forall x. P(x)$, you can plug in any value, say a, for x to conclude that $P(a)$ is true and so further assume it.

This rule is called *universal instantiation*.
Proposition 19 Fix a positive integer \(m \). For integers \(a \) and \(b \), we have that \(a \equiv b \pmod{m} \) if, and only if, for all positive integers \(n \), we have that \(n \cdot a \equiv n \cdot b \pmod{n \cdot m} \).

Proof: Assume \(m \) is a positive integer.

Let \(a \) and \(b \) be arbitrary integers.

\((\Rightarrow) \)

\(a \equiv b \pmod{m} \) then \(\forall \) pos. int. \(n \). \(na \equiv nb \pmod{n \cdot m} \).

Assume \(a \equiv b \pmod{m} \) that is, \(a-b = km \) for some int. \(k \).

\(\Rightarrow \) \(\forall \) pos. int. \(n \). \(na \equiv nb \pmod{n \cdot m} \).

Let \(n \) be an arbitrary positive integer.

\(\Rightarrow \) \(na \equiv nb \pmod{n \cdot m} \)

that is \(na-nb = kmn \) for some int. \(k \).

By \(\circ \), \(na-nb = n(a-b) = nkm = kmn \).

And we are done.
(\Leftarrow) \forall \text{pos. int } n. \ n a \equiv n b \ (\text{mod } nm) \\
\text{Then} \\
\ a \equiv b \ (\text{mod } m) \\
\text{Assume:} \ 1 \ \forall \text{pos. int } n. \ n a \equiv n b \ (\text{mod } nm) \\
\text{RTP:} \ a \equiv b \ (\text{mod } m) \\
\text{By 1 instantiating for } n = 1, \text{ we have} \\
1 \cdot a \equiv 1 \cdot b \ (\text{mod } 1 \cdot m) \\
\text{That is} \ a \equiv b \ (\text{mod } m)
Equality axioms

Just for the record, here are the axioms for equality.

1. Every individual is equal to itself.
 \[\forall x. \; x = x \]

2. For any pair of equal individuals, if a property holds for one of them then it also holds for the other one.
 \[\forall x. \forall y. \; x = y \implies (P(x) \implies P(y)) \]
NB From these axioms one may deduce the usual intuitive properties of equality, such as

\[\forall x. \forall y. x = y \implies y = x \]

and

\[\forall x. \forall y. \forall z. x = y \implies (y = z \implies x = z) \]

However, in practice, you will not be required to formally do so; rather you may just use the properties of equality that you are already familiar with.