
01/08/2019

1

Digital Electronics –

Introduction and

Combinational Logic

Dr. I. J. Wassell

Introduction

01/08/2019

2

Aims

• To familiarise students with

– Combinational logic circuits

– Sequential logic circuits

– How digital logic gates are built using

transistors

– Simple processor architectures

– Design and build of digital logic systems

Course Structure

• 12 Lectures

• Hardware Labs

– 6 Workshops

– 7 sessions, each one 2.5h, alternate

weeks, beginning week 3

– In Intel Lab. (SW11), William Gates

Building (WGB)

– In groups of 2

01/08/2019

3

Objectives

• At the end of the course you should

– Be able to design and construct simple

digital electronic systems

– Be able to understand and apply Boolean

logic and algebra – a core competence in

Computer Science

– Be able to understand and build state

machines

Books

• Lots of books on digital electronics, e.g.,

– D. M. Harris and S. L. Harris, ‘Digital Design
and Computer Architecture,’ Morgan Kaufmann,
2007 (1st Ed.), 2012 (2nd Ed.).

– R. H. Katz, ‘Contemporary Logic Design,’
Benjamin/Cummings, 1994.

– J. P. Hayes, ‘Introduction to Digital Logic
Design,’ Addison-Wesley, 1993.

• Electronics in general (inc. digital)

– P. Horowitz and W. Hill, ‘The Art of Electronics,’
CUP, 1989.

01/08/2019

4

Simulation Software

• There are a number of packages available that
enable simulation of digital electronic circuits
using a graphical interface e.g.,

– National Instruments (NI) Multisim

– Yenka Electronics (Technology Package)

• The former is much more powerful (and
expensive), but the latter is relatively
straightforward to use and is free to use
(except between 8.30 and 15.00)

• You may have used Yenka Electronics at
school. It is free to download

Other Points

• This course is a prerequisite for

– Computer Design, ECAD and Architecture
Practical Classes (Part IB)

– Comparative Architectures (Part II)

– Hardware Security, Advanced Topics in
Computer Architecture (MPhil/Part III)

• Keep up with lab work and get it ticked.

• Have a go at supervision questions plus
any others your supervisor sets.

• Remember to try questions from past
papers

01/08/2019

5

The Bigger Picture

• As you may be aware, probably the
most significant application of digital
logic is to implement microprocessors
and microprocessor based computer
systems.

• However, digital logic is also employed
to build a wide variety of other electronic
systems that are not microprocessor
based.

Managing Complexity

• Modern digital systems e.g., microprocessors,
are typically built from millions of transistors.

• It would be impossible for a human to design
such a system by for example, writing
equations describing the movement of electrons
in each transistor and then attempting to solve
the equations simultaneously.

• We have to manage complexity in order that we
are not swamped in a mass of detail.

• To do this we employ abstraction.

01/08/2019

6

Abstraction

• Abstraction, i.e., hiding details when they are
not important.

• Indeed a system can be viewed from many
different levels of abstraction.

• For example, for an electronic computing
system, we can consider levels of abstraction
from pure physics (electrons) at the bottom
level through to application software (programs)
at the top level.

• In this course we will primarily be considering
Devices, Digital Circuits and Logic Elements
levels of abstraction.

Physics

Microarchitecture

Application

Software

Devices

Digital Circuits

Logic Elements

Architecture

Operating Systems

Electrons – quantum mechanics, Maxwell’s

equations

Transistors – well defined I/V characteristics

between input/output terminals

Gates, e.g., AND, NOT – Devices assembled to

create ‘digital’ components

Adders, Memories, etc. – Complex structures put

together from digital circuits

Data paths, Controllers – Combines logic elements

to execute instructions defined by the architecture

Instructions, Registers – e.g., Intel-IA32 defined

by a set of instructions and registers

Device drivers – Handles low-level details such as

accessing a hard drive or managing memory

Programs – Application software uses facilities

provided by OS to solve a problem for the user

01/08/2019

7

Abstraction

• So the point is that you can browse the web
without any regard quantum theory or the
organisation of memory in the computer.

• That said, when working at a particular level of
abstraction, it is good to know something about
the levels of abstraction immediately above and
below where you are working, e.g.,

– A device designer needs to understand the circuits
in which it will be used,

– Code cannot be optimised without understanding
the architecture for which it is being written.

Microprocessor

• Defined by its architecture and microarchitecture

• The architecture is defined by its instruction set
and registers

• The microarchitecture is the specific arrangement
of registers, arithmetic logic units (ALUs),
controllers, multiplexers, memories and other logic
blocks needed to implement a particular
architecture.

• Note that a particular architecture may be
implemented by many different microarchitectures,
each having different trade-offs of performance,
complexity and cost.

01/08/2019

8

Combinational Logic

Introduction to Logic Gates

• We will introduce Boolean algebra and

logic gates

• Logic gates are the building blocks of

digital circuits

01/08/2019

9

Logic Variables

• Different names for the same thing

– Logic variables

– Binary variables

– Boolean variables

• Can only take on 2 values, e.g.,

– TRUE or False

– ON or OFF

– 1 or 0

Logic Variables

• In electronic circuits the two values can

be represented by e.g.,

– High voltage for a 1

– Low voltage for a 0

• Note that since only 2 voltage levels are

used, the circuits have greater immunity

to electrical noise

01/08/2019

10

Uses of Simple Logic

• Example – Heating Boiler

– If chimney is not blocked and the house is cold
and the pilot light is lit, then open the main fuel
valve to start boiler.

b = chimney blocked

c = house is cold

p = pilot light lit

v = open fuel valve

– So in terms of a logical (Boolean) expression
v = (NOT b) AND c AND p

Logic Gates

• Basic logic circuits with one or more

inputs and one output are known as

gates

• Gates are used as the building blocks in

the design of more complex digital logic

circuits

01/08/2019

11

Representing Logic Functions

• There are several ways of representing

logic functions:

– Symbols to represent the gates

– Truth tables

– Boolean algebra

• We will now describe commonly used

gates

NOT Gate

Symbol

a y

Truth-table

a y

0 1

1 0

Boolean

ay 

• A NOT gate is also called an ‘inverter’

• y is only TRUE if a is FALSE

• Circle (or ‘bubble’) on the output of a gate

implies that it as an inverting (or

complemented) output

01/08/2019

12

AND Gate

Symbol Truth-table Boolean

bay .
a

y
b

a y

0

1

1
0

b

0
0
1

0
0 0

1 1

• y is only TRUE only if a is TRUE and b is

TRUE

• In Boolean algebra AND is represented by

a dot .

OR Gate

Symbol

a
y

Truth-table Boolean

bay 

b

a y

0

1

1
0

b

0
0
1

1
0 1

1 1

• y is TRUE if a is TRUE or b is TRUE (or

both)

• In Boolean algebra OR is represented by

a plus sign 

01/08/2019

13

EXCLUSIVE OR (XOR) Gate

Symbol Truth-table Boolean

bay a y

0

0

1
0

b

0
0
1

1
0 1

1 1

• y is TRUE if a is TRUE or b is TRUE (but

not both)

• In Boolean algebra XOR is represented by

an sign 

a
y

b

NOT AND (NAND) Gate

Symbol

a
y

Truth-table Boolean

bay .

b

a y

0

0

1
1

b

0
0
1

1
0 1

1 1

• y is TRUE if a is FALSE or b is FALSE (or

both)

• y is FALSE only if a is TRUE and b is

TRUE

01/08/2019

14

NOT OR (NOR) Gate

Symbol

a
y

Truth-table Boolean

bay 

b

a y

0

0

1
1

b

0
0
1

0
0 0

1 1

• y is TRUE only if a is FALSE and b is

FALSE

• y is FALSE if a is TRUE or b is TRUE (or

both)

Boiler Example

• If chimney is not blocked and the house is

cold and the pilot light is lit, then open the

main fuel valve to start boiler.
b = chimney blocked c = house is cold

p = pilot light lit v = open fuel valve

pcbv ..

b

c
p

01/08/2019

15

Boolean Algebra
• In this section we will introduce the laws

of Boolean Algebra

• We will then see how it can be used to
design combinational logic circuits

• Combinational logic circuits do not have
an internal stored state, i.e., they have
no memory. Consequently the output is
solely a function of the current inputs.

• Later, we will study circuits having a
stored internal state, i.e., sequential
logic circuits.

Boolean Algebra

OR AND
aa  0
aaa 

11a
1 aa

00. a
aaa .
aa 1.
0. aa

• AND takes precedence over OR, e.g.,
).().(.. dcbadcba 

01/08/2019

16

Boolean Algebra

• Commutation

• Association

• Distribution

• Absorption

abba 
abba .. 

)()(cbacba 
)..()..(cbacba 

 ).().().(cabacba
NEW).).(() ..( cabacba 

NEW).(acaa 
NEW).(acaa 

Boolean Algebra - Examples

Show
babaa .).(

bababaaabaa ..0..).(

Show
babaa ).(

bababaaabaa ).(1)).(().(

01/08/2019

17

Boolean Algebra

• A useful technique is to expand each

term until it includes one instance of each

variable (or its compliment). It may be

possible to simplify the expression by

cancelling terms in this expanded form

e.g., to prove the absorption rule:

abaa  .

aabbabababababa  1.).(.....

Boolean Algebra - Example

Simplify
zyxzxzyyx 

zyxzyxzyxzyxzyxzyxzyx 

zyxzyxzyxzyx 
).(.).(. xxzyzzyx 

1..1.. zyyx 
zyyx .. 

01/08/2019

18

DeMorgan’s Theorem

 ... cbacba 

 ...  cbacba

 ... cbacba 

 ...  cbacba

• In a simple expression like (or)

simply change all operators from OR to

AND (or vice versa), complement each

term (put a bar over it) and then

complement the whole expression, i.e.,

cba  cba ..

DeMorgan’s Theorem

• For 2 variables we can show

and using a truth table.

baba .

baba .

0
1
0

0
1 0

0

0
1

0
1 1

ba a b ba. a b ba. ba 

0

1
1

1
0

1
1

0
0

0
1

1
0

0
1

0
0

1
1

1

• Extending to more variables by induction

cbacbacbacba ..)..(.)(

01/08/2019

19

DeMorgan’s Examples

• Simplify).().(. cbbcbaba 

(DeMorgan) cbbcbaba 

0)b(b. ...  cbaba

n)(absorbtio .ba

DeMorgan’s Examples

• Simplify dcbadbcba .)..)..(.(

Morgan) (De .).).(.(dcbadbcba 

e)(distribut .).......(dcbadbabbacba 

)0..(.).....( bbadcbadbacba

e)(distribut dcbdcadcdbadcba 

)0....(.......  dcdbadcbdcadcba

e)(distribut ..).(dcbaba 

(DeMorgan) ..)..(dcbaba 

1)..(.  babadc

01/08/2019

20

DeMorgan’s in Gates

• To implement the function we

can use AND and OR gates

dcbaf .. 

a

b

c

d

f

• However, sometimes we only wish to

use NAND or NOR gates, since they

are usually simpler and faster

DeMorgan’s in Gates

• To do this we can use ‘bubble’ logic

a

b

c

d

f

x

y

Two consecutive ‘bubble’ (or

complement) operations cancel,

i.e., no effect on logic function

See AND gates are

now NAND gates

What about this gate?

DeMorgan says yxyx .

Which is a NOT

AND (NAND) gate

So is equivalent to

01/08/2019

21

DeMorgan’s in Gates

• So the previous function can be built

using 3 NAND gates

f

a

b

c

d

a

b

c

d

f

dcbaf .. 

).).(.(dcbaf 

DeMorgan’s in Gates

• Similarly, applying ‘bubbles’ to the input

of an AND gate yields

x

y
f

What about this gate?

DeMorgan says yxyx .

Which is a NOT OR

(NOR) gate

So is equivalent to

• Useful if trying to build using NOR gates

01/08/2019

22

Logic Minimisation

• Any Boolean function can be implemented
directly using combinational logic (gates)

• However, simplifying the Boolean function will
enable the number of gates required to be
reduced. Techniques available include:
– Algebraic manipulation (as seen in examples)

– Karnaugh (K) mapping (a visual approach)

– Tabular approaches (usually implemented by
computer, e.g., Quine-McCluskey)

• K mapping is the preferred technique for up to
about 5 variables

Truth Tables
• f is defined by the following truth table

x y z f minterms

0 0 0 1 zyx ..
0 0 1 1 zyx ..
0 1 0 1 zyx ..
0 1 1 1 zyx ..
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1 zyx ..

• A minterm must contain

all variables (in either

complement or

uncomplemented form)

• Note variables in a

minterm are ANDed

together (conjunction)

• One minterm for each

term of f that is TRUE

• So is a minterm but is notzyx .. zy.

01/08/2019

23

Disjunctive Normal Form

• A Boolean function expressed as the

disjunction (ORing) of its minterms is said

to be in the Disjunctive Normal Form (DNF)

• A Boolean function expressed as the

ORing of ANDed variables (not necessarily

minterms) is often said to be in Sum of

Products (SOP) form, e.g.,

zyxzyxzyxzyxzyxf 

le truth tabsame thehave functions Note .zyxf 

Maxterms

• A maxterm of n Boolean variables is the
disjunction (ORing) of all the variables either
in complemented or uncomplemented form.

– Referring back to the truth table for f, we can
write,

Applying De Morgan (and complementing) gives

So it can be seen that the maxterms of are
effectively the minterms of with each variable
complemented

zyxzyxzyxf 

)).().((zyxzyxzyxf 
f

f

01/08/2019

24

Conjunctive Normal Form

• A Boolean function expressed as the

conjunction (ANDing) of its maxterms is said

to be in the Conjunctive Normal Form (CNF)

• A Boolean function expressed as the ANDing

of ORed variables (not necessarily maxterms)

is often said to be in Product of Sums (POS)

form, e.g.,

)).().((zyxzyxzyxf 

)).((zxyxf 

Logic Simplification

• As we have seen previously, Boolean

algebra can be used to simplify logical

expressions. This results in easier

implementation

Note: The DNF and CNF forms are not

simplified.

• However, it is often easier to use a

technique known as Karnaugh mapping

01/08/2019

25

Karnaugh Maps

• Karnaugh Maps (or K-maps) are a
powerful visual tool for carrying out
simplification and manipulation of logical
expressions having up to 5 variables

• The K-map is a rectangular array of
cells

– Each possible state of the input variables
corresponds uniquely to one of the cells

– The corresponding output state is written in
each cell

K-maps example

x y z f

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

• From truth table to K-map

y z

1100 01 10

0

1

x

1 1 11

1x

z

y

Note that the logical state of the

variables follows a Gray code, i.e.,

only one of them changes at a time

The exact assignment of variables in

terms of their position on the map is

not important

01/08/2019

26

K-maps example
• Having plotted the minterms, how do we

use the map to give a simplified

expression?
• Group terms

• Having size equal to a power of

2, e.g., 2, 4, 8, etc.

• Large groups best since they

contain fewer variables

• Groups can wrap around edges

and corners

y z

1100 01 10

0

1

x

1 1 11

1x

z

yx zy.

So, the simplified func. is,

 .zyxf  as before

K-maps – 4 variables
• K maps from Boolean expressions

– Plot ... dcbbaf 

1100 01 10

00

01

11

10

ba
dc

1 1 1 1

1
a

b

c

d

• See in a 4 variable map:
– 1 variable term occupies 8 cells

– 2 variable terms occupy 4 cells

– 3 variable terms occupy 2 cells, etc.

01/08/2019

27

K-maps – 4 variables

• For example, plot

 bf  .dbf 

1100 01 10

00

01

11

10

ba
dc

1

1

1

1
a

b

c

d

1100 01 10

00

01

11

10

ba
dc

1

11 11

a

b

c

d

111

K-maps – 4 variables

• Simplify, dcdcbadcbdbaf 

1100 01 10

00

01

11

10

ba
dc

1

a

b

c

d

11

1

1

1

1

ba.
dc.

So, the simplified func. is,

 .. dcbaf 

01/08/2019

28

POS Simplification
• Note that the previous examples have

yielded simplified expressions in the
SOP form

– Suitable for implementations using AND
followed by OR gates, or only NAND gates
(using DeMorgans to transform the result –
see previous Bubble logic slides)

• However, sometimes we may wish to
get a simplified expression in POS form

– Suitable for implementations using OR
followed by AND gates, or only NOR gates

POS Simplification

• To do this we group the zeros in the map

– i.e., we simplify the complement of the function

• Then we apply DeMorgans and

complement

• Use ‘bubble’ logic if NOR only

implementation is required

01/08/2019

29

POS Example

• Simplify into POS form. ... dcbbaf 

1100 01 10

00

01

11

10

ba
dc

1 1 1 1

1
a

b

c

d

Group

zeros

1100 01 10

00

01

11

10

ba
dc

1 1 1 1

1
a

b

c

d

0 0 0 0

0 0 0

0 0 0 0

b da. ca.

 .. dacabf 

POS Example

• Applying DeMorgans to
 .. dacabf 

)).(.(dacabf 

)).(.(dacabf 

f

a

c

a

d

b

f

a

c

a

d

b

gives,

f

a

c

a

d

b

01/08/2019

30

Expression in POS form

• Apply DeMorgans and take

complement, i.e., is now in SOP form

• Fill in zeros in table, i.e., plot

• Fill remaining cells with ones, i.e., plot

• Simplify in usual way by grouping ones

to simplify

 f

 f

f

f

Don’t Care Conditions

• Sometimes we do not care about the
output value of a combinational logic
circuit, i.e., if certain input combinations
can never occur, then these are known
as don’t care conditions.

• In any simplification they may be treated
as 0 or 1, depending upon which gives
the simplest result.

– For example, in a K-map they are entered
as Xs

01/08/2019

31

Don’t Care Conditions - Example

• Simplify the function dcadcadbaf 

With don’t care conditions, ... ,... ,... dcbadcbadcba

1100 01 10

00

01

11

10

ba
dc

1

a

b

c

d

X 1

1

1

1

X

X

ba.
dc.

dcbaf .. 

See only need to include

Xs if they assist in making

a bigger group, otherwise

can ignore.

or, dcdaf .. 

Some Definitions
• Cover – A term is said to cover a minterm if that

minterm is part of that term

• Prime Implicant – a term that cannot be further

combined

• Essential Prime Implicant – a prime implicant

that covers a minterm that no other prime

implicant covers

• Covering Set – a minimum set of prime

implicants which includes all essential terms plus

any other prime implicants required to cover all

minterms

01/08/2019

32

Some Definitions - Example

Prime implicants

Essential prime

implicants

Covering set

b

1 10 0 0 1 1 0

0 0

0 1

1 1

1 0

ba
dc

1

a

c

d

1

1

1

1

1

11

1

1

Tabular Simplification

• Except in special cases or for sparse truth

tables, the K-map method is not practical

beyond 6 variables

• A systematic approach known as the Quine-

McCluskey (Q-M) Method finds the minimised

representation of any Boolean expression

• It is a tabular method that ensures all the

prime implicants are found and can be

automated for use on a computer

01/08/2019

33

Q-M Method

• The Q-M Method has 2 steps:

– First a table, known as the QM implication table, is

used to find all the prime implicants;

– Next the minimum cover set is found using the

prime implicant chart.

• We will use a 4 variable example to show the

method in operation:

– Minterms are: 4,5,6,8,9,10,13

– Don’t cares are: 0,7,15.

Q-M Method

• The first step is to list all the minterms and

don’t cares in terms of their minterm indices

represented as a binary number

– Note the entries are grouped according to the

number of 1s in the binary representation

– The 1st column contains the minterms

– After applying the method, the 2nd column will

contain 3 variable terms. Similarly for subsequent

columns.

01/08/2019

34

Q-M Method

• The method begins by listing groups of

minterms and don’t cares in groups

containing ascending numbers of 1s with a

blank line between the groups

– Thus the first group has zero ones, the second

group has a single 1 and the third has two 1s and

so on

• We next apply the so called uniting theorem

iteratively as follows

Q-M Method – Uniting Theorem
– Compare elements in the 1st group (no 1s) with all

elements in the 2nd group. If they differ by a single

bit, it means the terms are adjacent (think K-map)

– Adjacent terms are placed in the 2nd column with

the single bit that differs replaced by a dash (-).

Terms in the 1st column that contribute to a term in

the second are ticked, i.e., they are not prime

implicants.

– Now repeat for the groups in the 2nd column

– As before groups must differ only by a single bit

but they must also have a – in the same position

– Groups in 2nd column that do not contribute to the

3rd column are marked with an asterix (*), i.e., they

are prime implicants

01/08/2019

35

Q-M – Implication Table

Column 1

0 1 0 0
1 0 0 0

0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0

0 1 1 1
1 1 0 1

1 1 1 1

Column 2

0 0 0 0



















0 - 0 0 *
- 0 0 0 *

0 1 0 - 
0 1 - 0
1 0 0 - *
1 0 - 0 *

0 1 - 1
- 1 0 1
0 1 1 - 
1 - 0 1 *

- 1 1 1
1 1 - 1

0 1 - - *

- 1 - 1 *

Column 3

– Minterms are: 4,5,6,8,9,10,13

– Don’t cares are: 0,7,15.

K-map view of Q-M example

Col. 2 adjacent

minterms

b

1 10 0 0 1 1 0

0 0

0 1

1 1

1 0

ba
dc

1
a

c

d

1

1

1

X

11 1

1

X

X
Col. 2 * adjacent

minterms, i.e.,

prime implicants

Col. 3 prime

implicants

01/08/2019

36

Q-M – Finding Min Cover

– The second step is to find the lowest number of

prime implicants that cover the function – this is

achieved using the prime implicant chart

– This chart is organised as follows:

• Label columns with the minterm indices (don’t include

don’t cares)

• Label rows with minterms covered by a given prime

implicant. To do this dashes (-) in a prime implicant are

replaced by all combinations of 0s and 1s

• Place an X in the (row, column) location if the minterm

represented by the column index is covered by the prime

implicant associated with the row

• The next slide shows the initial prime implicant chart

Q-M – Prime Implicant Chart
4 5 6 8 9 10 13

0,4 (0-0 0)

0,8 (- 0 00)

8,9 (100 -)

8,10(10 - 0)

9,13(1-0 1)

4,5,6,7(01 - -)

5,7,13,15 (- 1 - 1)

X

X

X X

X X

X X

X X X

X X

• Now we look for the essential prime implicants –

These are indicated when there is only a single X in

any column, i.e., This means there is a minterm

covered by one and only prime implicant

* Terms in

Implication

Table

Minterms (exc.

don’t cares)

01/08/2019

37

Q-M – Prime Implicant Chart
• The essential terms must be included in the final cover

– Draw lines in the column and row that have a X associated with

an essential prime implicant and draw a box around the prime

– These minterms are already covered by the essential primes

4 5 6 8 9 10 13

0,4 (0-0 0)

0,8 (- 0 00)

8,9 (100 -)

8,10(10 - 0)

9,13(1-0 1)

4,5,6,7(01 - -)

5,7,13,15 (- 1 - 1)

X

X

X X

X X

X X

X X X

X X

Q-M – Prime Implicant Chart
• The essential prime implicants usually cover additional

minterms.

– We must also cross out any columns that have an X in a row

associated with an essential prime since these minterms are

already covered by the essential primes

4 5 6 8 9 10 13

0,4 (0-0 0)

0,8 (- 0 00)

8,9 (100 -)

8,10(10 - 0)

9,13(1-0 1)

4,5,6,7(01 - -)

5,7,13,15 (- 1 - 1)

X

X

X X

X X

X X

X X X

X X

01/08/2019

38

Q-M – Prime Implicant Chart
• We see 2 minterms are still uncovered (cols. 9 and 13)

– The final step is to find as few primes as possible to cover the

remaining minterms

– We see the single prime implicant 1-01 covers both of them

– The boxed terms show the final covering set

4 5 6 8 9 10 13

0,4 (0-0 0)

0,8 (- 0 00)

8,9 (100 -)

8,10(10 - 0)

9,13(1-0 1)

4,5,6,7 (01 - -)

5,7,13,15 (- 1 - 1)

X

X

X X

X X

X X

X X X

X X

Final K-Map view of Q-M Example

b

1 10 0 0 1 1 0

0 0

0 1

1 1

1 0

ba
dc

1
a

c

d

1

1

1

X

11 1

1

X

X

Selected prime

implicant to

complete covering

set

Essential prime

implicant

01/08/2019

39

Binary Adders

Binary Adding Circuits

• We will now look at how binary addition

may be implemented using combinational

logic circuits. We will consider:

– Half adder

– Full adder

– Ripple carry adder

01/08/2019

40

Half Adder
• Adds together two, single bit binary

numbers a and b (note: no carry input)

• Has the following truth table:
a cout

0
1

b

0
0
1 0

1
0
0
0

1 1

sum

0
1
1
0

a

b cout

sum

• By inspection:
bababasum  ..

bacout .

Full Adder

• Adds together two, single bit binary

numbers a and b (note: with a carry input)

a

b cout

sum

cin

• Has the following truth table:

01/08/2019

41

Full Adder

a coutb sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 10

0
0
0

0
1
0

0
1 0
1 11

1
1
1

1
1
1
0

1
0
0
1

)...()...(

........

babacbabacsum

bacbacbacbacsum

inin

inininin





From DeMorgan

)..(

)....(

)).((..

abba

bbabbaaa

babababa







So,

bacxcxcxcsum

babacbabacsum

inininin

inin





..

)..(.)...(

Full Adder
a coutb sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 10

0
0
0

0
1
0

0
1 0
1 11

1
1
1

1
1
1
0

1
0
0
1

bacbbcbac

bacbcbac

bacbacbac

bacbacccbac

bacbacbacbacc

ininout

ininout

ininout

ininininout

ininininout

..)).(.(

..)..(

.....

....).(.

........











).(.

...

.)).(.(.)..(

abcabc

cacbabc

caaacabcaacabc

inout

ininout

ininininout







01/08/2019

42

Full Adder
• Alternatively,

a coutb sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 10

0
0
0

0
1
0

0
1 0
1 11

1
1
1

1
1
1
0

1
0
0
1

babacc

ccbababacc

bacbacbacbacc

inout

inininout

ininininout

.).(

).(.)...(

........







• Which is similar to previous expression

except with the OR replaced by XOR

Ripple Carry Adder
• We have seen how we can implement a

logic to add two, one bit binary numbers

(inc. carry-in).

• However, in general we need to add

together two, n bit binary numbers.

• One possible solution is known as the

Ripple Carry Adder

– This is simply n, full adders cascaded

together

01/08/2019

43

Ripple Carry Adder

a0 b0c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

• Example, 4 bit adder

• Note: If we complement a and set co to

one we have implemented abs 

To Speed up Ripple Carry Adder

• Abandon compositional approach to the adder
design, i.e., do not build the design up from
full-adders, but instead design the adder as a
block of 2-level combinational logic with 2n
inputs (+1 for carry in) and n outputs (+1 for
carry out).

• Features

– Low delay (2 gate delays)

– Need some gates with large numbers of inputs
(which are not available)

– Very complex to design and implement (imagine
the truth table!

01/08/2019

44

To Speed up Ripple Carry Adder

• Clearly the 2-level approach is not
feasible

• One possible approach is to make use
of the full-adder blocks, but to generate
the carry signals independently, using
fast carry generation logic

• Now we do not have to wait for the carry
signals to ripple from full-adder to full-
adder before output becomes valid

Fast Carry Generation
a0 b0c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

Conventional

RCA

Fast Carry

Adder

a0 b0c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

Fast Carry Generation

c0 c1 c2 c3

01/08/2019

45

Fast Carry Generation

• We will now determine the Boolean

equations required to generate the fast

carry signals

• To do this we will consider the carry out

signal, cout, generated by a full-adder

stage (say i), which conventionally gives

rise to the carry in (cin) to the next stage,

i.e., ci+1.

Fast Carry Generation

a b sici

0 00 0

1 10 10

1 00 01

100 01

0

1 0

1 11

1

1

1

1

0

101 10

0 01 01

ci+1

Carry out same as carry in.

Call this carry propagate

Carry out generated

independently of carry in.

Call this carry generate

Carry out always zero.

Call this carry kill

iii bag .

iii bap 

iii bak .

Also (from before), iiii cbas 

01/08/2019

46

Fast Carry Generation

• Also from before we have,
).(.1 iiiiii bacbac 

or alternatively,

).(.1 iiiiii bacbac 

Using previous expressions gives,

iiii pcgc .1 

So,

iiiiiii

iiiiii

iiii

cppgpgc

pcgpgc

pcgc

...

)..(

.

1112

112

1112













Fast Carry Generation

Similarly,

iiiiiiiiii

iiiiiiii

iiii

cpppgpgpgc

pcgpgpgc

pcgc

...)..(

))..(.(

.

1211223

11223

2223













and

iiiiiiiiiiiii

iiiiiiiiiiii

iiii

cppppgpgpgpgc

cpppgpgpgpgc

pcgc

....))..(.(

)...)..(.(

.

1231122334

121122334

3334













01/08/2019

47

Fast Carry Generation

• So for example to generate c4, i.e., i = 0,

04

0012301122334))..(.(

PcGc

cppppgpgpgpgc





where,

0123

0112233

...

))..(.(

ppppP

gpgpgpgG





• See it is quick to evaluate this function

Fast Carry Generation

• We could generate all the carrys within an

adder block using the previous equations

• However, in order to reduce complexity, a

suitable approach is to implement say 4-bit

adder blocks with only c4 generated using

fast generation.

– This is used as the carry-in to the next 4-bit

adder block

– Within each 4-bit adder block, conventional RCA

is used

01/08/2019

48

Fast Carry Generation

a0 b0c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

Fast Carry Generation

c0

Fast Carry Generation

• Conventional ripple carry within 4-bit blocks

• Fast carry generation between 4-bit blocks

• Trade-off between complexity and speed

01/08/2019

49

Combinational Logic Design

Further Considerations

Multilevel Logic

• We have seen previously how we can
minimise Boolean expressions to yield
so called ‘2-level’ logic implementations,
i.e., SOP (ANDed terms ORed together)
or POS (ORed terms ANDed together)

• Note also we have also seen an
example of ‘multilevel’ logic, i.e., full
adders cascaded to form a ripple carry
adder – see we have more than 2 gates
in cascade in the carry chain

01/08/2019

50

Multilevel Logic

• Why use multilevel logic?

– Commercially available logic gates usually

only available with a restricted number of

inputs, typically, 2 or 3.

– System composition from sub-systems

reduces design complexity, e.g., a ripple

adder made from full adders

– Allows Boolean optimisation across multiple

outputs, e.g., common sub-expression

elimination

Building Larger Gates

• Building a 6-input OR gate

01/08/2019

51

Common Expression Elimination

• Consider the following minimised SOP

expression:

gfecfdcfebfdbfeafdaz 

• Requires:

• Six, 3 input AND gates, one 7-input

OR gate – total 7 gates, 2-levels

• 19 literals (the total number of times

all variables appear)

• We can recursively factor out common literals

Common Expression Elimination

gfedcbaz

gfecbadcbaz

gfecdcebdbeadaz

gfecfdcfebfdbfeafdaz









).).((

).).().((

).......(

............

• Now express z as a number of equations in 2-

level form:

cbax  edy  gfyxz  ..

• 4 gates, 9 literals, 3-levels

01/08/2019

52

Gate Propagation Delay

• So, multilevel logic can produce reductions
in implementation complexity. What is the
downside?

• We need to remember that the logic gates
are implemented using electronic
components (essentially transistors) which
have a finite switching speed.

• Consequently, there will be a finite delay
before the output of a gate responds to a
change in its inputs – propagation delay

Gate Propagation Delay

• The cumulative delay owing to a number of

gates in cascade can increase the time

before the output of a combinational logic

circuit becomes valid

• For example, in the Ripple Carry Adder, the

sum at its output will not be valid until any

carry has ‘rippled’ through possibly every full

adder in the chain – clearly the MSB will

experience the greatest potential delay

01/08/2019

53

Gate Propagation Delay

• As well as slowing down the operation of
combinational logic circuits, gate delay can
also give rise to so called ‘Hazards’ at the
output

• These Hazards manifest themselves as
unwanted brief logic level changes (or
glitches) at the output in response to
changing inputs

• We will now describe how we can address
these problems

Hazards

• Hazards are classified into two types,

namely, static and dynamic

• Static Hazard – The output undergoes a

momentary transition when one input

changes when it is supposed to remain

unchanged

• Dynamic Hazard – The output changes

more than once when it is supposed to

change just once

01/08/2019

54

Timing Diagrams

• To visually represent Hazards we will use the

so called ‘timing diagram’

• This shows the logical value of a signal as a

function of time, for example the following

timing diagram shows a transition from 0 to 1

and then back again

Logic ‘0’

Time

Logic ‘1’

Timing Diagrams

• Note that the timing diagram makes a number

simplifying assumptions (to aid clarity)

compared with a diagram which accurately

shows the actual voltage against time

– The signal only has 2 levels. In reality the signal

may well look more ‘wobbly’ owing to electrical

noise pick-up etc.

– The transitions between logic levels takes place

instantaneously, in reality this will take a finite

time.

01/08/2019

55

Static Hazard

Logic ‘0’

Time

Logic ‘1’

Static 1 hazard

Logic ‘0’

Time

Logic ‘1’ Static 0 hazard

Dynamic Hazard

Logic ‘0’

Time

Logic ‘1’

Dynamic hazard

Logic ‘0’

Time

Logic ‘1’

Dynamic hazard

01/08/2019

56

Static 1 Hazard
x

y

z

t

u

v

w

y

t

u

v

w

This circuit implements,

yzyxw .. 

Consider the output when

and changes from 1 to 0

1 xz
y

Hazard Removal

• To remove a 1 hazard, draw the K-map
of the output concerned. Add another
term which overlaps the essential terms

• To remove a 0 hazard, draw the K-map
of the complement of the output
concerned. Add another term which
overlaps the essential terms
(representing the complement)

• To remove dynamic hazards – not
covered in this course!

01/08/2019

57

Removing the static 1 hazard
yzyxw .. 

y z

1100 01 10

0

1

x

1

1

1 1x

z

y

Extra term added to remove

hazard, consequently,

zxyzyxw ... 

x

y

z

w

Beyond Simple Logic Gates

• Multiplexor (Mux)/selector – chooses

1 of many inputs to steer to its single

output under the direction of control

inputs, e.g., if the input to a circuit can

come from several places a Mux is one

way to funnel the multiple sources

selectively to the single ouput.

01/08/2019

58

Multiplexor
• The hazard example is actually a 2-to-1 (2:1)

Mux, i.e., it can select either input x or z to

appear at output w under control of y

x
y

z

w x yz

0 0 0 0
0 1 0 1
1 0 0 0
1 1 0 1
0 0 1 0
0 1 1 0
1 0 1 1
1 1 1 1

w

Mux
x

y

z
w

x

z
w

y

Multiplexor
• Clearly an n-to-1 (n:1) Mux is also possible.

For example, an 8-to-1 (8:1) Mux will need

3 control inputs.

• A Mux can also be used to implement

combinational logic functions. For example,

an 8 input Mux can be used to implement

functions having 3 variables expressed as

a sum of minterms, i.e., DNF.

zyxzyxzyxzyxzyxf 

01/08/2019

59

Multiplexor
zyxzyxzyxzyxf 

f

1
0
1

1
1

0

0
0

I0
I1
I2

I3

I4
I5
I6
I7

F

S2 S1S0

x y z

• The control inputs are used to select the

minterms required at the output. The Mux is

sometimes called a hardware look-up table.

Multiplexor

yxzyxyxf

zzyxzyxyxf

zyxzyxzyxzyxf

.)...(

).(.)...(

........







• In this example if we use one of the inputs as

a variable, then we can get away with a 4-to-1

(4:1) Mux

f
0
1

I0
I1
I2

I3

F

S1 S0

x y

z
z

01/08/2019

60

Multiplexor
• We see it can also be designed via a truth

table based approach, e.g.,

f
0
1

I0
I1
I2

I3

F

S1 S0

x y

z
z

x y z

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

f

z0I

z1I

0I2 

1I3 

Demultiplexor
• A demultiplexor is the opposite of a Mux,

i.e., a single input is directed to exactly

one of its outputs

• The truth table for a 1-to-2 (1:2) Demux

(i.e., 1 control input and 2 outputs is:

f0
g

O0
I0

S0

x

O1 f1

g

x
f0

f1

g x

0 0 0 0
1 0 1 0
0 1 0 0
1 1 0 1

0f 1f

01/08/2019

61

Demultiplexor
• Clearly a larger Demux are also possible.

For example, a 3-to-8 (3:8) Demux has 3

control inputs and 8 outputs.

• A related function is a Decoder. In this

case the input g is permanently connected

to a logic 1. This yields a 1-of-2 decoder

(also known as a 1:2 decoder)
g x

0 0 0 0
1 0 1 0
0 1 0 0
1 1 0 1

0f 1f

g =1

x

0 1 0
1 0 1

0f 1f

• See only one output is logic 1 at a time

Decoder
• Clearly an 1-of-n Decoder is possible. For

example, a 1-of-8 Decoder (i.e., a 3:8

decoder) has 3 control inputs and 8 outputs.

• A typical application would be to ‘Enable

(EN)’ 1 out-of-n logic sub-systems.

O0
O1
O2

O3

O4
O5
O6

O7

S2

S1

S0
x

y

z

EN System 0

EN System 1

EN System 7

• So, letting

x=1, y=z=0

will enable

System 1

01/08/2019

62

Decoder
• We can see that a 1-of-n Decoder will

generate all the possible minterms having

n variables.

• Consequently, a logical expression having

DNF form can be implemented by ORing

together the required minterms at the

decoder output.

• Multiple output logic blocks can be created

by using multiple OR gates at the decoder

output, i.e., one for each output.

Decoder

O0
O1
O2

O3

O4
O5
O6

O7

S2

S1

S0
x

y

z

xyzxyzxyzf0 

xyzxyzf1 

• Decoder implementation of a 3 variable, 2

output combinational logic block.

Additional OR gates

to give more

outputs if required

01/08/2019

63

Even More Ways to Implement

Combinational Logic

• We have seen how combinational logic

can be implemented using logic gates

(e.g., AND, OR), Mux and Demux.

• However, it is also possible to generate

combinational logic functions using

memory devices, e.g., Read Only

Memories (ROMs)

ROM Overview

• A ROM is a data storage device:

– Usually written into once (either at manufacture or
using a programmer)

– Read at will

– Essentially is a look-up table, where a group of
input lines (say n) is used to specify the address
of locations holding m-bit data words

– For example, if n = 4, then the ROM has 24 = 16
possible locations. If m = 4, then each location
can store a 4-bit word

– So, the total number of bits stored is , i.e.,
64 in the example (very small!) ROM

nm 2

01/08/2019

64

ROM Example

data

x y z f

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

address

(decimal)

0
1
2
3
4
5
6
7

D0D1D2D3

X X X 1
X X X 1
X X X 1
X X X 1
X X X 0
X X X 0
X X X 0
X X X 1

64-bit

ROM

A0

A1

A2

A3

D0

D1

D2

D3

address data
z
y
x
'0'

Design amounts to putting

minterms in the appropriate

address location

No logic simplification

required

Useful if multiple Boolean

functions are to be

implemented, e.g., in this

case we can easily do up to

4, i.e., 1 for each output line

Reasonably efficient if lots of

minterms need to be

generated

ROM Implementation
• Can be quite inefficient, i.e., become large in

size with only a few non-zero entries, if the
number of minterms in the function to be
implemented is quite small

• Devices which can overcome these problems
are known as programmable logic array (PLA)

• In PLAs, only the required minterms are
generated using a separate AND plane. The
outputs from this plane are ORed together in
a separate OR plane to produce the final
output

01/08/2019

65

Basic PLA Structure

Programmed by

selectively removing

connections in the AND

and OR planes –

controlled by fuses or

memory bits

f0

a

c

b

f1

f2

AND plane

OR plane

Other PLA Style Structures
• In PLAs, only the required minterms are

generated using a separate AND plane.
Output from this plane are available to all OR
gates to give the final output

• A modified structure known as Programmable
Array Logic (PAL) does not have a
programmable OR array and so outputs from
the AND array can not be shared among the
OR gates to give the final outputs.

• This simplifies the structure, but at the cost of
lower efficiency

01/08/2019

66

Basic PAL Structure

f0

a

c

b

fn

AND

plane

OR

plane

Other Memory Devices

• Non-volatile storage is offered by ROMs (and

some other memory technologies, e.g.,

FLASH), i.e., the data remains intact, even

when the power supply is removed

• Volatile storage is offered by Static Random

Access Memory (SRAM) technology

– Data can be written into and read out of the

SRAM, but is lost once power is removed

01/08/2019

67

Memory Application

• Memory devices are often used in computer
systems

• The central processing unit (CPU) often
makes use of busses (a bunch of wires in
parallel) to access external memory devices

• The address bus is used to specify the
memory location that is being read or written
and the data bus conveys the data too and
from that location

• So, more than one memory device will often
be connected to the same data bus

Bus Contention

• In this case, if the output from the data pin of

one memory was a 0 and the output from the

corresponding data pin of another memory

was a 1, the data on that line of the data bus

would be invalid

• So, how do we arrange for the data from

multiple memories to be connected to the

some bus wires?

01/08/2019

68

Bus Contention

• The answer is:

– Tristate buffers (or drivers)

– Control signals

• A tristate buffer is used on the data output of
the memory devices

– In contrast to a normal buffer which is either 1
or 0 at its output, a tristate buffer can be
electrically disconnected from the bus wire, i.e.,
it will have no effect on any other data currently
on the bus – known as the ‘high impedance’
condition

Tristate Buffer

Output Enable

(OE) = 1

OE = 0

Bus line

OE = 1

Bus line

OE = 0

Symbol Functional

analogy

01/08/2019

69

Control Signals

• We have already seen that the memory
devices have an additional control input (OE)
that determines whether the output buffers are
enabled.

• Other control inputs are also provided:

– Write enable (WE). Determines whether data is
written or read (clearly not needed on a ROM)

– Chip select (CS) – determines if the chip is
activated

• Note that these signals can be active low,
depending upon the particular device

