Digital Electronics —
Introduction and
Combinational Logic

Dr. I. J. Wassell

Introduction

01/08/2019

01/08/2019

Aims

» To familiarise students with
— Combinational logic circuits
— Sequential logic circuits

— How digital logic gates are built using
transistors

— Simple processor architectures
— Design and build of digital logic systems

Course Structure

12 Lectures

 Hardware Labs
— 6 Workshops

— 7 sessions, each one 2.5h, alternate
weeks, beginning week 3

— In Intel Lab. (SW11), William Gates
Building (WGB)

— In groups of 2

Obijectives

At the end of the course you should

— Be able to design and construct simple
digital electronic systems

— Be able to understand and apply Boolean
logic and algebra — a core competence in
Computer Science

— Be able to understand and build state
machines

Books

* Lots of books on digital electronics, e.g.,

—D. M. Harris and S. L. Harris, ‘Digital Design
and Computer Architecture,” Morgan Kaufmann,
2007 (1stEd.), 2012 (2" Ed.).

— R. H. Katz, ‘Contemporary Logic Design,’
Benjamin/Cummings, 1994.

—J. P. Hayes, ‘Introduction to Digital Logic
Design,” Addison-Wesley, 1993.

 Electronics in general (inc. digital)

— P. Horowitz and W. Hill, ‘The Art of Electronics,’
CUP, 1989.

01/08/2019

Simulation Software

« There are a number of packages available that
enable simulation of digital electronic circuits
using a graphical interface e.g.,

— National Instruments (NI) Multisim
— Yenka Electronics (Technology Package)

* The former is much more powerful (and
expensive), but the latter is relatively
straightforward to use and is free to use
(except between 8.30 and 15.00)

* You may have used Yenka Electronics at
school. It is free to download

Other Points

This course is a prerequisite for

— Computer Design, ECAD and Architecture
Practical Classes (Part IB)

— Comparative Architectures (Part Il)

— Hardware Security, Advanced Topics in
Computer Architecture (MPhil/Part)

Keep up with lab work and get it ticked.

Have a go at supervision questions plus
any others your supervisor sets.

Remember to try questions from past
papers

01/08/2019

01/08/2019

The Bigger Picture

« As you may be aware, probably the
most significant application of digital
logic is to implement microprocessors
and microprocessor based computer
systems.

« However, digital logic is also employed
to build a wide variety of other electronic
systems that are not microprocessor
based.

Managing Complexity

Modern digital systems e.g., microprocessors,
are typically built from millions of transistors.

It would be impossible for a human to design
such a system by for example, writing
equations describing the movement of electrons
In each transistor and then attempting to solve
the equations simultaneously.

We have to manage complexity in order that we
are not swamped in a mass of detail.

To do this we employ abstraction.

Abstraction

Abstraction, i.e., hiding details when they are

not important.

Indeed a system can be viewed from many
different levels of abstraction.

For example, for an electronic computing
system, we can consider levels of abstraction
from pure physics (electrons) at the bottom

level through to application software (programs)

at the top level.

In this course

we will primarily be considering

Devices, Digital Circuits and Logic Elements
levels of abstraction.

Application
Software

Operating Systems

Architecture

Microarchitecture

Logic Elements

Digital Circuits

Devices

Physics

Programs — Application software uses facilities
provided by OS to solve a problem for the user
Device drivers — Handles low-level details such as
accessing a hard drive or managing memory
Instructions, Registers —e.g., Intel-1A32 defined
by a set of instructions and registers

Data paths, Controllers — Combines logic elements
to execute instructions defined by the architecture
Adders, Memories, etc. — Complex structures put
together from digital circuits

Gates, e.g., AND, NOT — Devices assembled to
create ‘digital’ components

Transistors — well defined 1/V characteristics
between input/output terminals

Electrons — quantum mechanics, Maxwell’s
equations

01/08/2019

Abstraction

So the point is that you can browse the web
without any regard quantum theory or the
organisation of memory in the computer.

That said, when working at a particular level of

abstraction, it is good to know something about

the levels of abstraction immediately above and

below where you are working, e.qg.,

— A device designer needs to understand the circuits
in which it will be used,

— Code cannot be optimised without understanding
the architecture for which it is being written.

Microprocessor

Defined by its architecture and microarchitecture

The architecture is defined by its instruction set
and registers

The microarchitecture is the specific arrangement
of registers, arithmetic logic units (ALUS),
controllers, multiplexers, memories and other logic
blocks needed to implement a particular
architecture.

Note that a particular architecture may be
implemented by many different microarchitectures,
each having different trade-offs of performance,
complexity and cost.

01/08/2019

Combinational Logic

Introduction to Logic Gates

« We will introduce Boolean algebra and
logic gates

 Logic gates are the building blocks of
digital circuits

01/08/2019

01/08/2019

Logic Variables

« Different names for the same thing
— Logic variables
— Binary variables
— Boolean variables
« Can only take on 2 values, e.g.,
— TRUE or False
— ON or OFF
—1lor0

Logic Variables

* In electronic circuits the two values can
be represented by e.g.,
— High voltage fora 1
— Low voltage for a O

* Note that since only 2 voltage levels are
used, the circuits have greater immunity
to electrical noise

Uses of Simple Logic

« Example — Heating Boiler
— If chimney is not blocked and the house is cold
and the pilot light is lit, then open the main fuel
valve to start boiler.
b = chimney blocked
¢ = house is cold
p = pilot light lit
v = open fuel valve
— So in terms of a logical (Boolean) expression
v =(NOT b) AND ¢ AND p

Logic Gates

 Basic logic circuits with one or more
inputs and one output are known as
gates

« Gates are used as the building blocks in
the design of more complex digital logic
circuits

01/08/2019

10

Representing Logic Functions

» There are several ways of representing
logic functions:

— Symbols to represent the gates
— Truth tables

— Boolean algebra

« We will now describe commonly used
gates

NOT Gate
Symbol Truth-table Boolean
a y aly y=a
4I>‘k 0|1
110

 ANOT gate is also called an ‘inverter’
« yisonly TRUE if ais FALSE

 Circle (or ‘bubble’) on the output of a gate
implies that it as an inverting (or
complemented) output

01/08/2019

11

AND Gate
Symbol Truth-table Boolean
a A
b:D—y 00]0
0110
10(0
111

« yisonly TRUE only ifais TRUE and b is
TRUE

 In Boolean algebra AND is represented by
a dot .

OR Gate

Symbol Truth-table Boolean

a ably y=a+b
)

yis TRUE ifais TRUE or b is TRUE (or
both)

In Boolean algebra OR is represented by
a plus sign +

PR, OO
RPORFRO
)

01/08/2019

12

EXCLUSIVE O

R (XOR) Gate

Symbol Truth-table Boolean

ab

>

PR, OO
RORFRO

Y y=a®b
0
1
1

0

« yis TRUE ifais TRUE or b is TRUE (but

not both)

 In Boolean algebra XOR is represented by

an @ sign

NOT AND (NAND) Gate

Symbol Truth-

ab

a
=D

RFRLOO
—RORO

both)

TRUE

table Boolean
y y=ab

oORRpR

y is TRUE if ais FALSE or b is FALSE (or

y is FALSE only ifais TRUE and b is

01/08/2019

13

01/08/2019

NOT OR (NOR) Gate
Symbol Truth-table Boolean
ably y=a+b
a
b@wy 001
010
10(0
1110
« yis TRUE only if ais FALSE and b is
FALSE
» yis FALSE if ais TRUE or b is TRUE (or
both)

Boiler Example

« If chimney is not blocked and the house is
cold and the pilot light is lit, then open the
main fuel valve to start boiler.

b = chimney blocked ¢ = house is cold
p = pilot light lit v = open fuel valve

b
C— v=Db.c.
| Jveer

14

01/08/2019

Boolean Algebra

In this section we will introduce the laws
of Boolean Algebra

We will then see how it can be used to
design combinational logic circuits

Combinational logic circuits do not have
an internal stored state, i.e., they have
no memory. Consequently the output is
solely a function of the current inputs.

Later, we will study circuits having a
stored internal state, i.e., sequential
logic circuits.

Boolean Algebra

OR AND
a+0=a a.0=0
a+a=a aa=a
a+l1=1 al=a
a+a=1 aa=0

« AND takes precedence over OR, e.qg.,
ab+c.d=(ab)+(cd)

15

Boolean Algebra

« Commutation
a+b=Db+a
ab=b.a

« Assqciation
a+b)+c=a+(b+c)
ab).c=a.(b.c)

« Distribution
a.(b+c+...):(a.b;+(a.c3+...
a+(bc...)=(a+b).(a+c).... NEW

« Absorption
a+(ac)=a NEW
a(a+c)=a NEW

Boolean Algebra - Examples

Show

a(a+b)=ab
a(a+b)=aa+ab=0+ab=ab

Show

a+(ab)=a+b
a+(ab)=(a+a).(a+b)=1(a+b)=a+b

01/08/2019

16

01/08/2019

Boolean Algebra

» A useful technique is to expand each
term until it includes one instance of each
variable (or its compliment). It may be
possible to simplify the expression by
cancelling terms in this expanded form
e.g., to prove the absorption rule:

a+ab=a

=

ab+ab+ah=ab+ab=a(b+b)=al=a

Boolean Algebra - Example
Simplify

XY+ VY.Z+XZ+XY.Z
XY.Z+XYZ+XY.Z+XY.Z+XY.Z+XY.Z+XY.Z
XY.Z+XY.Z+XY.Z+X.y.Z
XY.(Z+2)+Yy.2.(X+X)

Xy.l+y.z1l

X.y+Yy.Z

17

DeMorgan’s Theorem

a+b+c+...=abwc. ...
abc. ...=a+b+c+ ...

* In a simple expression like a+b+c (or ab.c)
simply change all operators from OR to
AND (or vice versa), complement each
term (put a bar over it) and then
complement the whole expression, i.e.,
a+b+c+...=abwc. ...

abc....=a+b+c+ ...

DeMorgan’s Theorem

* For Zivariablies we can show a+b=ab
and ab=a+b using a truth table.

aba+b ab ab ab a+b

00 1 1 11 1 1

1 0 1 10 0 1

0O 0 1 01 0 1
11 0 0 00 0 O

« Extending to more variables by induction

a+b+c=(a+b)c=(ab)c=abc

01/08/2019

18

DeMorgan’s Examples

« Simplify ab +a.(b+c)+b.(o+c)
=ab +ab.c+bb.c (DeMorgan)
=ab+ab.c (b.b=0)
=ab (absorbtion)

DeMorgan’s Examples

 Simplify (ab.(c+b.d)+ab).cd
=(ab.(c+b+d)+a+b)cd (DeMorgan)
=(abc+abb+abd+a+b)cd (distribute)
=(abc+abd+a+b)cd (abb=0)
=abcd+abd.cd+acd+b.cd (distribute)
=ab.cd+a.cd+b.cd (ab.d.cd =0)
=(ab+a+b).cd (distribute)

=(ab+ab)cd (DeMorgan)
=cd (ab+ab=1)

01/08/2019

19

DeMorgan’s in Gates

 To implement the function f =ab+cd we
can use AND and OR gates

a
b

c
d

* However, sometimes we only wish to
use NAND or NOR gates, since they
are usually simpler and faster

DeMorgan’s in Gates

* To do this we can use ‘bubble’ logic

Two consecutive ‘bubble’ (or

a X complement) operations cancel,
b f i.e., no effect on logic function
c AN
d y What about this gate? S
N DeMorgan says X + Y = X.Y
See AND gates are
now NAND gates Which is a NOT

AND (NAND) gate

So @— is equivalent t0:|:>w

01/08/2019

20

DeMorgan’s in Gates

» So the previous function can be built
using 3 NAND gates

a a
b b

f f
c =D

d d
f =ab+cd
f =(ab).(cd)

DeMorgan’s in Gates

 Similarly, applying ‘bubbles’ to the input
of an AND gate vyields

X
@7 f
y Which is a NOT OR

What about this gate? /(NOR) gate
DeMorgan says X.y = X+ V y

j:)— is equivalent to i)w

 Useful if trying to build using NOR gates

01/08/2019

21

Logic Minimisation

« Any Boolean function can be implemented
directly using combinational logic (gates)

« However, simplifying the Boolean function will
enable the number of gates required to be
reduced. Techniques available include:

— Algebraic manipulation (as seen in examples)

— Karnaugh (K) mapping (a visual approach)

— Tabular approaches (usually implemented by
computer, e.g., Quine-McCluskey)

« K mapping is the preferred technique for up to
about 5 variables

Truth Tables

 f is defined by the following truth table
* A minterm must contain

minterms all variables (in either
X.y.Z complement or

X.y.z

X.y.z uncomplemented form)
X.y.Z * Note variables in a

minterm are ANDed
together (conjunction)

X.Yy.Z * One minterm for each
term of f that is TRUE

* So x.y.z IS a minterm but y.z is not

RPRRRPROO0OO0OO|x
RPROORRFROO |«
RPORORORO|N
RPOOORRRRE |

01/08/2019

22

Disjunctive Normal Form

» A Boolean function expressed as the
disjunction (ORing) of its minterms is said
to be in the Disjunctive Normal Form (DNF)

f =XYy.Z4+XY.Z+XYZ+XY.Z+XY.Z

» A Boolean function expressed as the
ORing of ANDed variables (not necessarily
minterms) is often said to be in Sum of
Products (SOP) form, e.g.,
f =x+y.z Note functions have the same truth table

Maxterms

« A maxterm of n Boolean variables is the
disjunction (ORing) of all the variables either
in complemented or uncomplemented form.

— Referring back to the truth table for f, we can
write,
f =Xy.Z+Xy.Z+XYy.Z

Applying De Morgan (and complementing) gives
f=(X+y+2).(X+y+2).(X+y+2)
So it can be seen that the maxterms of f are

effectively the minterms of f with each variable
complemented

01/08/2019

23

01/08/2019

Conjunctive Normal Form

» A Boolean function expressed as the
conjunction (ANDing) of its maxterms is said
to be in the Conjunctive Normal Form (CNF)

f=(X+y+2).(X+y+2).(X+y+2)

» A Boolean function expressed as the ANDing
of ORed variables (not necessarily maxterms)
is often said to be in Product of Sums (POS)
form, e.g.,

f=(X+Yy).(x+2)

Logic Simplification

« As we have seen previously, Boolean
algebra can be used to simplify logical
expressions. This results in easier
implementation
Note: The DNF and CNF forms are not

simplified.

* However, it is often easier to use a
technique known as Karnaugh mapping

24

Karnaugh Maps

« Karnaugh Maps (or K-maps) are a
powerful visual tool for carrying out
simplification and manipulation of logical
expressions having up to 5 variables

 The K-map is a rectangular array of
cells

— Each possible state of the input variables
corresponds uniquely to one of the cells

— The corresponding output state is written in
each cell

K-maps example

* From truth table to K-map

xyz|f vz ,
000]1 XN\00 01 11 10

001]1 oj1f(1]11]1

010]1 1 1

0111 |

100(|0 y

% 8 é 8 Note that the logical state of the
1111 variables follows a Gray code, i.e.,

only one of them changes at a time

The exact assignment of variables in
terms of their position on the map is
not important

01/08/2019

25

K-maps example

» Having plotted the minterms, how do we
use the map to give a simplified

ion?

, * Having size equal to a power of

yz 2,e.9., 2, 4,8, etc.
X\00 01 11 10 _
0 11} * Large groups best since they
x| 1 1) contain fewer variables

» Groups can wrap around edges
and corners

X7 Yz y
So, the simplified func. is,
f =Xx+y.z asbefore

K-maps — 4 variables

+ K maps from Boolean expressions

—Plot f=ab+bcd

cd
ab\. 00 01 11 10

00
o1|1f1]1]1
11 (1
10

C

a

d
* See in a 4 variable map:
— 1 variable term occupies 8 cells
— 2 variable terms occupy 4 cells
— 3 variable terms occupy 2 cells, etc.

01/08/2019

26

K-maps — 4 variables

» For example, plot

cd
ab\ 00 01 11 10

00
01
11

a
10

f=Db

C

1({1(1]1

a

00
01
11
10

f=bd
c
cd
ab\ 00 01 11 10
1 1
1 1

K-maps — 4 variables

« Simplify, f =ab.d +b.cd+ab.c.d+cd
C

So, the simplified func. is,

cd
ab_00 01 11 10
00 A\
01 T[T
.| 12 1
10 \1/
ab d

f=ab+cd

c.d

01/08/2019

27

POS Simplification

* Note that the previous examples have
yielded simplified expressions in the
SOP form
— Suitable for implementations using AND

followed by OR gates, or only NAND gates
(using DeMorgans to transform the result —
see previous Bubble logic slides)

* However, sometimes we may wish to
get a simplified expression in POS form

— Suitable for implementations using OR
followed by AND gates, or only NOR gates

POS Simplification

* To do this we group the zeros in the map
—i.e., we simplify the complement of the function

* Then we apply DeMorgans and
complement

« Use ‘bubble’ logic if NOR only
implementation is required

01/08/2019

28

POS Example
« Simplify f=ab+bcd into POS form.
C C
2S00 01 11 10 200 01 11 10,
00 00 fololoalo/
011111bGr°“p or[1]a]1]1
. 111 Zeros . 11110
10 10 /0 0]
_ \
b ad d ac
f=b+ac+ad
POS Example
* Applying DeMorgansto
f=b+ac+ad c
gives, a
f =b.(a+c).(a+d) q
f =b.(a+c).(a+d) .
a a
Cc ¢ c
a a
d d

o

01/08/2019

29

Expression in POS form

Apply DeMorgans and take

complement, i.e., f is now in SOP form
Fill in zeros in table, i.e., plot f

Fill remaining cells with ones, i.e., plot f
Simplify in usual way by grouping ones
to simplify f

Don’t Care Conditions

Sometimes we do not care about the
output value of a combinational logic
circuit, i.e., if certain input combinations
can never occur, then these are known
as don't care conditions.

In any simplification they may be treated
as 0 or 1, depending upon which gives
the simplest result.

— For example, in a K-map they are entered
as Xs

01/08/2019

30

Don’t Care Conditions - Example

« Simplify the function f =ab.d+a.cd+acd
With don’t care conditions,ab.cd,ab.cd,abc.d

C

2%%00 01 11 10 See only need to include

00 1A Xs if they assist in making
01 X {i ‘b a bigger group, otherwise
al 1 o can ignore.

cd

ab

f=ab+cd or, f=ad+cd

Some Definitions

Cover — A term is said to cover a minterm if that
minterm is part of that term

Prime Implicant — a term that cannot be further
combined

Essential Prime Implicant — a prime implicant
that covers a minterm that no other prime
implicant covers

Covering Set — a minimum set of prime
implicants which includes all essential terms plus
any other prime implicants required to cover all
minterms

01/08/2019

31

01/08/2019

Some Definitions - Example

C

Cdoo Ol ll 10
ab ' Prime implicants
oo | AN | 0000 e ’

01 -, Essential prime
11 N lmpllcants

10

Q Covering set

Tabular Simplification

» Except in special cases or for sparse truth
tables, the K-map method is not practical
beyond 6 variables

» A systematic approach known as the Quine-
McCluskey (Q-M) Method finds the minimised
representation of any Boolean expression

* Itis a tabular method that ensures all the
prime implicants are found and can be
automated for use on a computer

32

Q-M Method

* The Q-M Method has 2 steps:

— First a table, known as the QM implication table, is
used to find all the prime implicants;

— Next the minimum cover set is found using the
prime implicant chart.
* We will use a 4 variable example to show the
method in operation:
— Minterms are: 4,5,6,8,9,10,13
— Don’t cares are: 0,7,15.

Q-M Method

* The first step is to list all the minterms and
don’t cares in terms of their minterm indices
represented as a binary number

— Note the entries are grouped according to the
number of 1s in the binary representation

— The 18t column contains the minterms

— After applying the method, the 2" column will
contain 3 variable terms. Similarly for subsequent
columns.

01/08/2019

33

Q-M Method

* The method begins by listing groups of
minterms and don’t cares in groups
containing ascending numbers of 1s with a
blank line between the groups

— Thus the first group has zero ones, the second
group has a single 1 and the third has two 1s and
so on

* We next apply the so called uniting theorem
iteratively as follows

Q-M Method — Uniting Theorem

— Compare elements in the 15t group (no 1s) with all
elements in the 2™ group. If they differ by a single
bit, it means the terms are adjacent (think K-map)

— Adjacent terms are placed in the 2" column with
the single bit that differs replaced by a dash (-).
Terms in the 15t column that contribute to a term in
the second are ticked, i.e., they are not prime
implicants.

— Now repeat for the groups in the 2"d column

— As before groups must differ only by a single bit
but they must also have a — in the same position

— Groups in 2" column that do not contribute to the
3" column are marked with an asterix (*), i.e., they
are prime implicants

01/08/2019

34

Q-M — Implication Table

— Minterms are: 4,5,6,8,9,10,13

— Don’t cares are: 0,7,15.

P PO RROO
P PR OO0RR
B OFR RORO
R PR OROR
AN N NI NN N

Column 2

o

| R OO
1 O

L1 R O O

>(-<\<\<\ >(->(-<\<\

1 = oRro!

]

e
R
AN

Column 3
01--~
-1-1*

K-map view of Q-M example

cd

ab POJ 01 11 10

c

00 X

o1 T

11

1 oiﬁ@

-, Col. 2 adjacent

minterms

Col. 2 * adjacent

b > minterms,ie.,

prime implicants

Col. 3 prime
implicants

01/08/2019

35

Q-M — Finding Min Cover

— The second step is to find the lowest number of
prime implicants that cover the function — this is
achieved using the prime implicant chart

— This chart is organised as follows:

» Label columns with the minterm indices (don’t include
don’t cares)

+ Label rows with minterms covered by a given prime
implicant. To do this dashes (-) in a prime implicant are
replaced by all combinations of Os and 1s

* Place an X in the (row, column) location if the minterm
represented by the column index is covered by the prime
implicant associated with the row

* The next slide shows the initial prime implicant chart

Q-M — Prime Implicant Chart

456891013

0,4(0-00)|X \

0,8(-000) X Minterms (exc.

’I* Telr_mst_in 8,9(100 -) X X don’t cares)
mplication
Table 8,10(10-0) X X
9,13(1-01) X X
4,5,6,7(01-)X X X
5713,15(-1-1) X X

* Now we look for the essential prime implicants —
These are indicated when there is only a single X in
any column, i.e., This means there is a minterm
covered by one and only prime implicant

01/08/2019

36

Q-M — Prime Implicant Chart

* The essential terms must be included in the final cover

— Draw lines in the column and row that have a X associated with
an essential prime implicant and draw a box around the prime

— These minterms are already covered by the essential primes

0,4(0-00)
0,8(-000)
8,9(100 -)
8,10(10-0)
9,13(1-01)
4,56,7(01- -)
5,7,13,15(- 1-1)

456891013

X

N
&

Q-M — Prime Implicant Chart

* The essential prime implicants usually cover additional

minterms.

— We must also cross out any columns that have an X in a row
associated with an essential prime since these minterms are
already covered by the essential primes

0,4(0-00)
0,8(-000)

8,9 (100 -)
8,10(10-0)
9,13(1-01)
4,5,6,7(01- -)
5,7,13,15(- 1-1)

456891013

X 1

K

01/08/2019

37

Q-M — Prime Implicant Chart

* We see 2 minterms are still uncovered (cols. 9 and 13)

— The final step is to find as few primes as possible to cover the
remaining minterms

— We see the single prime implicant 1-01 covers both of them
— The boxed terms show the final covering set

456891013
04(-00)x ¢ it]
0,8(-000)' ! ix! i !
89(100)} | XX :

[8,10(10- O 4t K-

[918@-0D)r +i——X-
[4,5,6,7 (01 -) K opiv o
571315(11)“}.(X

Final K-Map view of Q-M Example

_c
ab cd poj 01 11 10
00 |/ i Essential prime
01 ‘T implicant
11 Selected prime
2 10 SR implicant to
T complete covering
—q set

01/08/2019

38

01/08/2019

Binary Adders

Binary Adding Circuits

« We will now look at how binary addition
may be implemented using combinational
logic circuits. We will consider:

— Half adder
— Full adder
— Ripple carry adder

39

Half Adder

» Adds together two, single bit binary
numbers a and b (note: no carry input)

» Has the following truth table:

ab|c, sum

out a sum
00|00 O — —
01(0 1 b c
10|0 1 — ——out
11(1 O

* By inspection:
sum=ab+ab=a®b
Cout = ab

Full Adder

« Adds together two, single bit binary
numbers a and b (note: with a carry input)

a sum

b C

out

in

« Has the following truth table:

C

01/08/2019

40

Full Adder

0
=

Cout SUM

sum=c;,.ab+c,.ab +c¢,ab+c,.ab
sum=c;,.(ab+ab)+c,.(ab +ab)

From DeMorgan

ab+ab=(a+b).(a+b)
=(aa+ab +ba+bb)
=(ab +b.a)
So, _ —
sum=gc;,.(ab+ab)+c,.(ab+ab)
SuMm = G, X+ G, X =Cjy ® X =C;, DadDb

PRPRRPRPRPOOOO
PRPOORFRLROO|D
RPOFRORORLO|T
PRPRRPRORL,ROOO
RPOORORrREFLO

Full Adder

Cout = Cip-ab+¢j.ab+c,.ab+c,.ab

0
=

Cout SUM

Cout = @D.(C, +Cjy) +Cip-ab+c¢.ab
Cout =ab+c.ab+c,ab

Cout =a-(b+cb)+¢j.ab

Cout =a-(b+cip).(b+b)+¢.ab

PRPRRPRPRPOOOO
PRPOORRFRLROO|D
RPOFRPORORO|T
PRPRFRORFRLROOO
RPOORORrREFLO

Cout =Db.(a+¢c,.@)+ac, =b.(a+c,).(a+a)+ac,
Cout =P.a+b.g, +ac,
Cout =P.a+¢,.(b+a)

01/08/2019

41

Full Adder

 Alternatively,

0
=

Cout SUM
0 Cyyt =Cp-ab+c,ab+c,.ab+c,ab

Cout =Cin-(@b+ab)+ab.(c, +c,)
Cout =Cip-(@@Db)+ab

PRPRPRPPRPOOOO
PRPOORFRPOO|D
RPOFRPORFRPORO|T
PRPRFRPORFRLOOO

RPOORORE

* Which is similar to previous expression
except with the OR replaced by XOR

Ripple Carry Adder

« We have seen how we can implement a
logic to add two, one bit binary numbers
(inc. carry-in).

« However, in general we need to add
together two, n bit binary numbers.

* One possible solution is known as the
Ripple Carry Adder

— This is simply n, full adders cascaded
together

01/08/2019

42

Ripple Carry Adder
« Example, 4 bit adder

Co 3y by a by a b, a; by

‘ a b a b a b a b
Cin Cout Cin Cout Cin Cout Cin Cout
sum sum sum sum

So S, S, Sy Cy

* Note: If we complement a and set c, to
one we have implemented s=b-a

To Speed up Ripple Carry Adder

« Abandon compositional approach to the adder
design, i.e., do not build the design up from
full-adders, but instead design the adder as a
block of 2-level combinational logic with 2n
inputs (+1 for carry in) and n outputs (+1 for
carry out).

* Features
— Low delay (2 gate delays)

— Need some gates with large numbers of inputs
(which are not available)

— Very complex to design and implement (imagine
the truth table!

01/08/2019

43

To Speed up Ripple Carry Adder

» Clearly the 2-level approach is not
feasible

* One possible approach is to make use
of the full-adder blocks, but to generate
the carry signals independently, using
fast carry generation logic

* Now we do not have to wait for the carry
signals to ripple from full-adder to full-
adder before output becomes valid

Fast Carry Generation

Co 3y by a by a b, a; by
|1 |1 |1 |1
a b a b a b a b

Conventional
Cin Cout Cin Cout Cin Cout Cin Cout RCA
sum sum sum sum
I's, I's, I's, I's, C,
Co a, by a; by a, b, a; by
| | | | |
Fast Carry
Fast Carry Generation Adder
| | | |
a b a b a b a b
CO Cin Cout Cl Cin Cout C2 Cin Cout 03 Cin Cout
sum sum sum sum
I's, I's, I's, I's, C,

01/08/2019

44

Fast Carry Generation

« We will now determine the Boolean
equations required to generate the fast
carry signals

» To do this we will consider the carry out
signal, c,,, generated by a full-adder
stage (say i), which conventionally gives
rise to the carry in (c;,) to the next stage,
l.e., Ciyq-

Fast Carry Generation

Carry out always zero. —
G ab|s Call this carry kil ki =8
0.00..0
001 (1 X
0101 Carry ?ut same as carry in. D =a (‘Bbi
:_0____1___3-____:__6___________ Call this carry propagate
10011
10110 erry m:jt gelner?ted _
11010 independently of carry in. i = g; -bi
:_i___i__j-____:i___________ Call this carry generate

Also (from before), S = & @by D ¢

01/08/2019

45

Fast Carry Generation

* Also from before we have,
Ci=a.y +¢.(a +l) oralternatively,

Ci.y =8 +¢.(a &b)

Usmg prewous expressmns gives,
|+1 g| +C pl

So,

Cit2 = 0ix1 T Ci1-Ping
Cir2 =0ix1 t Piya (g| +G;. p|)
Ci+2 = Oit1 + Pit1-Qi + Pit1-Pi €

Fast Carry Generation

Similarly,
Ci+3 = Gi+2 T Ci12-Pit2
Ciy3 = Oir2 + Pir2-(Jist + Pisa-(9i +Ci-py))
Ciy3 = Oir2 + Pir2-(Jis1 + Pis1:0i) + Pir2-Piy1-Pi-C
and

Civa = Uiz3 T Ciy3-Piys
Cira = 0iz3 t Piys- (g|+2 + Pis2- (g|+1+ Piy1- g|)+ Pii2-Piy1-Pi-Ci)

Civa = Gir3+ Pis3-(Jis2 + Piv2-(Qia + Pis1-0i)) + Pisa-Piv2-Pisa- PiCi

01/08/2019

46

Fast Carry Generation

» So for example to generate c,, i.e., i =0,
Cs = g3+ P3-(92 + P2-(91+ P1-9o)) + P3-P2-P1-Po-Co
¢, =G+ Pc
where,

G =03+ P3.(92 + P2-(91 + P1-9o))
P = p3.P2-P1-Po
« See it is quick to evaluate this function

Fast Carry Generation

« We could generate all the carrys within an
adder block using the previous equations

« However, in order to reduce complexity, a
suitable approach is to implement say 4-bit
adder blocks with only ¢, generated using
fast generation.

— This is used as the carry-in to the next 4-bit
adder block

— Within each 4-bit adder block, conventional RCA
is used

01/08/2019

47

01/08/2019

Fast Carry Generation

Co a, by a; by a, b, a; b,
| | | | | | | | |
Fast Carry Generation
| | | |
a b a b a b a b
c cin cout Cin Cout cin cout Cin Cout
sum sum sum sum
ISO ISl ISZ IS3 C4

Fast Carry Generation

¢ a, by a, b a, b, ay by ay by as bs as by a; by
b b} Foronn] Fod Food o] o] b}
L i — i f-t i f- i
n Fast Carry Generation Fast Carry Generation B
[T | [T [T [T [T [1 [1
a b a b a b a b a b a b a b a b
('{; C‘m C‘UJIF CM cﬁh{ (‘IH (‘MU (lm (.nhr s Cm Cuiff i?H'l CUW Ciu Cum‘ Clu C:)ilﬂ
St St Sum sum suim Sint Sun
T | T T T ;
K T3 L T o - rs T35 LK T [

« Conventional ripple carry within 4-bit blocks
» Fast carry generation between 4-bit blocks
» Trade-off between complexity and speed

48

01/08/2019

Combinational Logic Design

Further Considerations

Multilevel Logic

« We have seen previously how we can
minimise Boolean expressions to yield
so called ‘2-level’ logic implementations,
l.e., SOP (ANDed terms ORed together)
or POS (ORed terms ANDed together)

* Note also we have also seen an
example of ‘multilevel’ logic, i.e., full
adders cascaded to form a ripple carry
adder — see we have more than 2 gates
in cascade in the carry chain

49

01/08/2019

Multilevel Logic

* Why use multilevel logic?

— Commercially available logic gates usually
only available with a restricted number of
inputs, typically, 2 or 3.

— System composition from sub-systems

reduces design complexity, e.g., a ripple
adder made from full adders

— Allows Boolean optimisation across multiple
outputs, e.g., common sub-expression
elimination

Building Larger Gates

 Building a 6-input OR gate

50

Common Expression Elimination

« Consider the following minimised SOP
expression:

z=ad.f +ae.f +bd.f +be.f +cd.f +ce.f +g
» Requires:
 Six, 3 input AND gates, one 7-input
OR gate — total 7 gates, 2-levels

« 19 literals (the total number of times
all variables appear)

Common Expression Elimination

« We can recursively factor out common literals
z=ad.f +ae.f +bd.f +be.f +cd.f +ce.f +g

z=(ad+ae+bd+be+cd+ce).f+g
z=((a+b+c)d+(a+b+c)e).f+g
z=(a+b+c).(d+e).f+g
* Now express z as a number of equations in 2-
level form:
X=a+b+c y=d+e z=xy.f+g
» 4 gates, 9 literals, 3-levels

01/08/2019

51

Gate Propagation Delay

» So, multilevel logic can produce reductions
in implementation complexity. What is the
downside?

* We need to remember that the logic gates
are implemented using electronic
components (essentially transistors) which
have a finite switching speed.

» Consequently, there will be a finite delay
before the output of a gate responds to a
change in its inputs — propagation delay

Gate Propagation Delay

* The cumulative delay owing to a number of
gates in cascade can increase the time
before the output of a combinational logic
circuit becomes valid

« For example, in the Ripple Carry Adder, the
sum at its output will not be valid until any
carry has ‘rippled’ through possibly every full
adder in the chain — clearly the MSB will
experience the greatest potential delay

01/08/2019

52

Gate Propagation Delay

» As well as slowing down the operation of
combinational logic circuits, gate delay can
also give rise to so called ‘Hazards’ at the
output

* These Hazards manifest themselves as
unwanted brief logic level changes (or
glitches) at the output in response to
changing inputs

* We will now describe how we can address
these problems

Hazards

« Hazards are classified into two types,
namely, static and dynamic

 Static Hazard — The output undergoes a
momentary transition when one input
changes when it is supposed to remain
unchanged

« Dynamic Hazard — The output changes
more than once when it is supposed to
change just once

01/08/2019

53

Timing Diagrams

» To visually represent Hazards we will use the
so called ‘timing diagram’

» This shows the logical value of a signal as a
function of time, for example the following
timing diagram shows a transition from 0 to 1
and then back again

Logic ‘1’

Logic ‘0’

Time

Timing Diagrams

» Note that the timing diagram makes a number
simplifying assumptions (to aid clarity)
compared with a diagram which accurately
shows the actual voltage against time

— The signal only has 2 levels. In reality the signal
may well look more ‘wobbly’ owing to electrical
noise pick-up etc.

— The transitions between logic levels takes place
instantaneously, in reality this will take a finite
time.

01/08/2019

54

Static Hazard

Logic ‘1’
“ Static 1 hazard
Logic ‘0’
Time
Logic ‘1’ H Static 0 hazard
Logic ‘0’
Time

Dynamic Hazard

Logic ‘1’ ‘ ‘ ‘
Dynamic hazard
Logic ‘0’

—_—

Time

Logic ‘1’
‘ ‘ ‘ ‘ ‘ Dynamic hazard
Logic ‘0’

—_—

Time

01/08/2019

55

Static 1 Hazard

y w
t
t
\' u

VA
This circuit implements,

W=XYy+2y W J
Consider the output when Z = X =1
and Y changes from 1 to 0

Hazard Removal

 Toremove a 1 hazard, draw the K-map
of the output concerned. Add another
term which overlaps the essential terms

« To remove a 0 hazard, draw the K-map
of the complement of the output
concerned. Add another term which
overlaps the essential terms
(representing the complement)

» To remove dynamic hazards — not
covered in this course!

01/08/2019

56

Removing the static 1 hazard

W=XYy+2y
z

yzZz
XN\ 00 01 11 10

ol [/1) y
x| 1 |@[D[™D -
y

Extra term added to remove
hazard, consequently,

W=XY+Z2Y+XZ

Beyond Simple Logic Gates

« Multiplexor (Mux)/selector — chooses
1 of many inputs to steer to its single
output under the direction of control
inputs, e.g., if the input to a circuit can
come from several places a Mux is one
way to funnel the multiple sources
selectively to the single ouput.

01/08/2019

57

Multiplexor

* The hazard example is actually a 2-to-1 (2:1)
Mux, i.e., it can select either input x or z to
appear at output w under control of y

X—
y W XZyW_
000]0
010]1
10010
z-—J_ 110(1
. « 0010
T 01110
I W
,_Mu—w 1011
| 11111
y y
Multiplexor

 Clearly an n-to-1 (n:1) Mux is also possible.
For example, an 8-to-1 (8:1) Mux will need
3 control inputs.

« A Mux can also be used to implement
combinational logic functions. For example,
an 8 input Mux can be used to implement
functions having 3 variables expressed as
a sum of minterms, i.e., DNF,

f =XV.Z+XY.Z+XY.Z+XY.Z+XY.Z

01/08/2019

58

Multiplexor
f =X.V.Z+XYZ+XY.Z+XY.Z

1 —l,

0 —I,

11—l

8_:2 Fl—of
0—I,

1 — IG

1—175,8,8,

« The control inputs are used to select the
minterms required at the output. The Mux is
sometimes called a hardware look-up table.

Multiplexor

* In this example if we use one of the inputs as
a variable, then we can get away with a 4-to-1
(4:1) Mux

=X.V.Z+X.

<

Z+XY.Z+XY.Z
).Z+XYy.(z+72)
)

01/08/2019

59

01/08/2019

Multiplexor

» We see it can also be designed via a truth
table based approach, e.g.,

Xyz|f
22Xt

0001 | _5

00:i1f0!l 0 7 —1n

01:0|1 _ 7 —I

o110l =2 g—li 1
1000 _ —1 ss

1 0i1]0 l, =0 1S
11001 15=1 ||
11111 X

Demultiplexor

» A demultiplexor is the opposite of a Mux,
l.e., a single input is directed to exactly
one of its outputs

* The truth table for a 1-to-2 (1:2) Demux
(i.e., 1 control input and 2 outputs is:

60

Demultiplexor
» Clearly a larger Demux are also possible.
For example, a 3-t0-8 (3:8) Demux has 3
control inputs and 8 outputs.

« A related function is a Decoder. In this
case the input g is permanently connected
to a logic 1. This yields a 1-of-2 decoder
(also known as a 1:2 decoder)

X|fo f1
1(0 1

Decoder

 Clearly an 1-of-n Decoder is possible. For
example, a 1-of-8 Decoder (i.e., a 3:8
decoder) has 3 control inputs and 8 outputs.

* A typical application would be to ‘Enable
(EN)’ 1 out-of-n logic sub-systems.

SQ{EN —") . S0, letting
;_ 22 82: EN System 1 X:.]., y:Z:O
i—s, o — will enable
Op— System 1
O7—+—eN System 7

01/08/2019

61

01/08/2019

Decoder

* We can see that a 1-of-n Decoder will
generate all the possible minterms having
n variables.

» Consequently, a logical expression having
DNF form can be implemented by ORing
together the required minterms at the
decoder output.

» Multiple output logic blocks can be created
by using multiple OR gates at the decoder
output, i.e., one for each output.

Decoder

» Decoder implementation of a 3 variable, 2
output combinational logic block.

fo=Z.Y.X+ZyX+2YX

X Sy o, ! Additional OR gates
y —Ss, 83 i to give more
z S, O: ! outputs if required

83 _\®_ fl=Z.yX+2yX

62

Even More Ways to Implement
Combinational Logic

* We have seen how combinational logic
can be implemented using logic gates
(e.g., AND, OR), Mux and Demux.

* However, it is also possible to generate
combinational logic functions using
memory devices, e.g., Read Only
Memories (ROMS)

ROM Overview

« A ROM is a data storage device:
— Usually written into once (either at manufacture or
using a programmer)
— Read at will
— Essentially is a look-up table, where a group of

input lines (say n) is used to specify the address
of locations holding m-bit data words

— For example, if n = 4, then the ROM has 24 = 16
possible locations. If m = 4, then each location
can store a 4-bit word

— So, the total number of bits stored is mx2" | i.e.,
64 in the example (very small') ROM

01/08/2019

63

ROM Example
address data Design amounts to putting
z Ao) minterms in the appropriate
y—a, 64bit p,— address location
X——A, ROM p,——
"0'—A; D, No logic simplification
. required
t
(32‘2{,‘;?,) xyz|f DaDa;El)lD0 Useful if multiple Boolean
0 000111 XXX 1 functlons are to be o
1 001l1l xxx1 implemented, e.g., in this
2 0101 XXX 1 case we can easily do up to
3 011|1| XXX 1 4, i.e., 1 for each output line
4 100|0| XXXDO
5 1010 XXX O Reasonably efficient if lots of
6 110(0|XXXO0 minterms need to be
7 11111 XXX 1 generated

ROM Implementation

« Can be quite inefficient, i.e., become large in
size with only a few non-zero entries, if the
number of minterms in the function to be
implemented is quite small

» Devices which can overcome these problems
are known as programmable logic array (PLA)

* In PLAS, only the required minterms are
generated using a separate AND plane. The
outputs from this plane are ORed together in
a separate OR plane to produce the final
output

01/08/2019

64

Basic PLA Structure

7
\ /
C

\ /
C

— — -

AND plane

Programmed by
selectively removing
connections in the AND
and OR planes —
controlled by fuses or
memory bits

OR plane

Other PLA Style Structures

* In PLAS, only the required minterms are
generated using a separate AND plane.

Output from this plane are available to all OR

gates to give the final output

« A modified structure known as Programmable

Array Logic (PAL) does not have a

programmable OR array and so outputs from
the AND array can not be shared among the

OR gates to give the final outputs.

 This simplifies the structure, but at the cost of
lower efficiency

01/08/2019

65

Basic PAL Structure

1 | 1
\

b - AND
) plane

=
N\

OR
plane

Other Memory Devices

* Non-volatile storage is offered by ROMs (and
some other memory technologies, e.g.,
FLASH), i.e., the data remains intact, even
when the power supply is removed

 Volatile storage is offered by Static Random
Access Memory (SRAM) technology

— Data can be written into and read out of the
SRAM, but is lost once power is removed

01/08/2019

66

Memory Application

Memory devices are often used in computer
systems

The central processing unit (CPU) often
makes use of busses (a bunch of wires in
parallel) to access external memory devices

The address bus is used to specify the
memory location that is being read or written
and the data bus conveys the data too and
from that location

So, more than one memory device will often
be connected to the same data bus

Bus Contention

In this case, if the output from the data pin of
one memory was a 0 and the output from the
corresponding data pin of another memory
was a 1, the data on that line of the data bus
would be invalid

So, how do we arrange for the data from
multiple memories to be connected to the
some bus wires?

01/08/2019

67

Bus Contention

* The answer is:
— Tristate buffers (or drivers)
— Control signals

« A tristate buffer is used on the data output of
the memory devices

— In contrast to a normal buffer which is either 1
or O at its output, a tristate buffer can be
electrically disconnected from the bus wire, i.e.,
it will have no effect on any other data currently
on the bus — known as the ‘high impedance’
condition

Tristate Buffer

Symbol Functional

: Bus line
Bus line analogy

OE=1

o B

Output Enable

(OE)=1 OEj_O
OE=0

01/08/2019

68

Control Signals

 We have already seen that the memory
devices have an additional control input (OE)
that determines whether the output buffers are
enabled.

« Other control inputs are also provided:

— Write enable (WE). Determines whether data is
written or read (clearly not needed on a ROM)

— Chip select (CS) — determines if the chip is
activated
» Note that these signals can be active low,
depending upon the particular device

01/08/2019

69

