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Digital Electronics –

Introduction and 

Combinational Logic

Dr. I. J. Wassell

Introduction
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Aims

• To familiarise students with

– Combinational logic circuits

– Sequential logic circuits

– How digital logic gates are built using 

transistors

– Simple processor architectures 

– Design and build of digital logic systems

Course Structure

• 12 Lectures

• Hardware Labs

– 6 Workshops

– 7 sessions, each one 2.5h, alternate 

weeks, beginning week 3

– In Intel Lab. (SW11), William Gates 

Building (WGB)

– In groups of 2
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Objectives

• At the end of the course you should

– Be able to design and construct simple 

digital electronic systems

– Be able to understand and apply Boolean 

logic and algebra – a core competence in 

Computer Science

– Be able to understand and build state 

machines

Books

• Lots of books on digital electronics, e.g.,

– D. M. Harris and S. L. Harris, ‘Digital Design 
and Computer Architecture,’ Morgan Kaufmann, 
2007 (1st Ed.), 2012 (2nd Ed.).

– R. H. Katz, ‘Contemporary Logic Design,’ 
Benjamin/Cummings, 1994.

– J. P. Hayes, ‘Introduction to Digital Logic 
Design,’ Addison-Wesley, 1993.

• Electronics in general (inc. digital)

– P. Horowitz and W. Hill, ‘The Art of Electronics,’ 
CUP, 1989.
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Simulation Software

• There are a number of packages available that 
enable simulation of digital electronic circuits 
using a graphical interface e.g.,

– National Instruments (NI) Multisim

– Yenka Electronics (Technology Package)

• The former is much more powerful  (and 
expensive), but the latter is relatively 
straightforward to use and is free to use 
(except between 8.30 and 15.00)

• You may have used Yenka Electronics at 
school. It is free to download 

Other Points

• This course is a prerequisite for

– Computer Design, ECAD and Architecture 
Practical Classes (Part IB)

– Comparative Architectures (Part II)

– Hardware Security, Advanced Topics in 
Computer Architecture (MPhil/Part III)

• Keep up with lab work and get it ticked.

• Have a go at supervision questions plus 
any others your supervisor sets.

• Remember to try questions from past 
papers
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The Bigger Picture

• As you may be aware, probably the 
most significant application of digital 
logic is to implement microprocessors
and microprocessor based computer 
systems.

• However, digital logic is also employed 
to build a wide variety of other electronic 
systems that are not microprocessor 
based.

Managing Complexity

• Modern digital systems e.g., microprocessors, 
are typically built from millions of transistors.

• It would be impossible for a human to design 
such a system by for example, writing 
equations describing the movement of electrons 
in each transistor and then attempting to solve 
the equations simultaneously.

• We have to manage complexity in order that we 
are not swamped in a mass of detail.

• To do this we employ abstraction.
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Abstraction

• Abstraction, i.e., hiding details when they are 
not important.

• Indeed a system can be viewed from many 
different levels of abstraction.

• For example, for an electronic computing 
system, we can consider levels of abstraction 
from pure physics (electrons) at the bottom 
level through to application software (programs) 
at the top level.

• In this course we will primarily be considering 
Devices, Digital Circuits and Logic Elements
levels of abstraction.

Physics

Microarchitecture

Application 

Software

Devices

Digital Circuits

Logic Elements

Architecture

Operating Systems

Electrons – quantum mechanics, Maxwell’s 

equations

Transistors – well defined I/V characteristics 

between input/output terminals

Gates, e.g., AND, NOT – Devices assembled to 

create ‘digital’ components

Adders, Memories, etc. – Complex structures put 

together from digital circuits

Data paths, Controllers – Combines logic elements 

to execute instructions defined by the architecture

Instructions, Registers – e.g., Intel-IA32 defined 

by  a set of instructions and registers

Device drivers – Handles low-level details such as 

accessing a hard drive or managing memory

Programs – Application software uses facilities 

provided by OS to solve a problem for the user
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Abstraction

• So the point is that you can browse the web 
without any regard quantum theory or the 
organisation of memory in the computer.

• That said, when working at a particular level of 
abstraction, it is good to know something about 
the levels of abstraction immediately above and 
below where you are working, e.g.,

– A device designer needs to understand the circuits 
in which it will be used,

– Code cannot be optimised without understanding 
the architecture for which it is being written.

Microprocessor

• Defined by its architecture and microarchitecture

• The architecture is defined by its instruction set 
and registers

• The microarchitecture is the specific arrangement 
of registers, arithmetic logic units (ALUs), 
controllers,  multiplexers, memories and other logic 
blocks needed to implement a particular 
architecture.

• Note that a particular architecture may be 
implemented by many different microarchitectures, 
each having different trade-offs of performance, 
complexity and cost.
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Combinational Logic

Introduction to Logic Gates

• We will introduce Boolean algebra and 

logic gates

• Logic gates are the building blocks of 

digital circuits
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Logic Variables

• Different names for the same thing

– Logic variables

– Binary variables

– Boolean variables

• Can only take on 2 values, e.g.,

– TRUE or False

– ON or OFF

– 1 or 0

Logic Variables

• In electronic circuits the two values can 

be represented by e.g.,

– High voltage for a 1

– Low voltage for a 0

• Note that since only 2 voltage levels are 

used, the circuits have greater immunity 

to electrical noise
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Uses of Simple Logic

• Example – Heating Boiler

– If chimney is not blocked and the house is cold 
and the pilot light is lit, then open the main fuel 
valve to start boiler.

b = chimney blocked

c = house is cold

p = pilot light lit

v = open fuel valve

– So in terms of a logical (Boolean) expression
v = (NOT b) AND c AND p

Logic Gates

• Basic logic circuits with one or more 

inputs and one output are known as 

gates

• Gates are used as the building blocks in 

the design of more complex digital logic 

circuits
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Representing Logic Functions

• There are several ways of representing 

logic functions:

– Symbols to represent the gates

– Truth tables

– Boolean algebra

• We will now describe commonly used 

gates

NOT Gate

Symbol

a y

Truth-table

a y

0 1

1 0

Boolean 

ay 

• A NOT gate is also called an ‘inverter’

• y is only TRUE if a is FALSE

• Circle (or ‘bubble’) on the output of a gate 

implies that it as an inverting (or 

complemented) output
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AND Gate

Symbol Truth-table Boolean 

bay .
a

y
b

a y

0

1

1
0

b

0
0
1

0
0 0

1 1

• y is only TRUE only if a is TRUE and b is 

TRUE

• In Boolean algebra AND is represented by 

a dot  .

OR Gate

Symbol

a
y

Truth-table Boolean 

bay 

b

a y

0

1

1
0

b

0
0
1

1
0 1

1 1

• y is TRUE if a is TRUE or b is TRUE (or 

both)

• In Boolean algebra OR is represented by 

a plus sign  
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EXCLUSIVE OR (XOR) Gate

Symbol Truth-table Boolean 

bay a y

0

0

1
0

b

0
0
1

1
0 1

1 1

• y is TRUE if a is TRUE or b is TRUE (but 

not both)

• In Boolean algebra XOR is represented by 

an     sign   

a
y

b

NOT AND (NAND) Gate

Symbol

a
y

Truth-table Boolean 

bay .

b

a y

0

0

1
1

b

0
0
1

1
0 1

1 1

• y is TRUE if a is FALSE or b is FALSE (or 

both)

• y is FALSE only if a is TRUE and b is 

TRUE
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NOT OR (NOR) Gate

Symbol

a
y

Truth-table Boolean 

bay 

b

a y

0

0

1
1

b

0
0
1

0
0 0

1 1

• y is TRUE only if a is FALSE and b is 

FALSE

• y is FALSE if a is TRUE or b is TRUE (or 

both)

Boiler Example

• If chimney is not blocked and the house is 

cold and the pilot light is lit, then open the 

main fuel valve to start boiler.
b = chimney blocked c = house is cold

p = pilot light lit v = open fuel valve

pcbv ..

b

c
p
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Boolean Algebra
• In this section we will introduce the laws 

of Boolean Algebra

• We will then see how it can be used to 
design combinational logic circuits

• Combinational logic circuits do not have 
an internal stored state, i.e., they have 
no memory. Consequently the output is 
solely a function of the current inputs. 

• Later, we will study circuits having a 
stored internal state, i.e., sequential 
logic circuits.

Boolean Algebra

OR AND
aa  0
aaa 

11a
1 aa

00. a
aaa .
aa 1.
0. aa

• AND takes precedence over OR, e.g.,
).().(.. dcbadcba 
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Boolean Algebra

• Commutation

• Association

• Distribution

• Absorption

abba 
abba .. 

)()( cbacba 
)..()..( cbacba 

  ).().().( cabacba
NEW       ).).(() ..(  cabacba 

NEW      ).( acaa 
NEW      ).( acaa 

Boolean Algebra - Examples

Show
babaa .).( 

bababaaabaa ..0..).( 

Show
babaa  ).(

bababaaabaa  ).(1)).(().(
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Boolean Algebra

• A useful technique is to expand each 

term until it includes one instance of each 

variable (or its compliment). It may be 

possible to simplify the expression by 

cancelling terms in this expanded form

e.g., to prove the absorption rule:

abaa  .

aabbabababababa  1.).(.....

Boolean Algebra - Example

Simplify
zyxzxzyyx ..... 

zyxzyxzyxzyxzyxzyxzyx .............. 

zyxzyxzyxzyx ........ 
).(.).(. xxzyzzyx 

1..1.. zyyx 
zyyx .. 
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DeMorgan’s Theorem

   ...  cbacba 

     ...  cbacba

   ...  cbacba 

     ...  cbacba

• In a simple expression like            (or       ) 

simply change all operators from OR to 

AND (or vice versa), complement each 

term (put a bar over it) and then 

complement the whole expression, i.e.,

cba  cba ..

DeMorgan’s Theorem

• For 2 variables we can show                 

and                using a truth table.

baba .

baba .

0
1
0

0
1 0

0

0
1

0
1 1

ba a b ba. a b ba. ba 

0

1
1

1
0

1
1

0
0

0
1

1
0

0
1

0
0

1
1

1

• Extending to more variables by induction

cbacbacbacba ..)..(.)( 
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DeMorgan’s Examples

• Simplify ).().(. cbbcbaba 

(DeMorgan)     ..... cbbcbaba 

0)b(b.     ...  cbaba

n)(absorbtio     .ba

DeMorgan’s Examples

• Simplify dcbadbcba .)..)..(.( 

Morgan) (De       .).).(.( dcbadbcba 

e)(distribut       .).......( dcbadbabbacba 

)0..(       .).....(  bbadcbadbacba

e)(distribut       ........... dcbdcadcdbadcba 

)0....(       .......  dcdbadcbdcadcba

e)(distribut      ..).( dcbaba 

(DeMorgan)      ..)..( dcbaba 

1)..(      .  babadc
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DeMorgan’s in Gates

• To implement the function                  we 

can use AND and OR gates

dcbaf .. 

a

b

c

d

f

• However, sometimes we only wish to 

use NAND or NOR gates, since they 

are usually simpler and faster

DeMorgan’s in Gates

• To do this we can use ‘bubble’ logic

a

b

c

d

f

x

y

Two consecutive ‘bubble’ (or 

complement) operations cancel, 

i.e., no effect on logic function

See AND gates are 

now NAND gates

What about this gate? 

DeMorgan says  yxyx .

Which is a NOT 

AND (NAND) gate

So is  equivalent to
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DeMorgan’s in Gates

• So the previous function can be built 

using 3 NAND gates

f

a

b

c

d

a

b

c

d

f

dcbaf .. 

).).(.( dcbaf 

DeMorgan’s in Gates

• Similarly, applying ‘bubbles’ to the input 

of an AND gate yields

x

y
f

What about this gate? 

DeMorgan says  yxyx .

Which is a NOT OR 

(NOR) gate

So is  equivalent to

• Useful if trying to build using NOR gates
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Logic Minimisation

• Any Boolean function can be implemented 
directly using combinational logic (gates)

• However, simplifying the Boolean function will 
enable the number of gates required to be 
reduced. Techniques available include:
– Algebraic manipulation (as seen in examples)

– Karnaugh (K) mapping (a visual approach)

– Tabular approaches (usually implemented by 
computer, e.g., Quine-McCluskey)

• K mapping is the preferred technique for up to 
about 5 variables

Truth Tables
• f is defined by the following truth table

x y z f minterms

0 0 0 1 zyx ..
0 0 1 1 zyx ..
0 1 0 1 zyx ..
0 1 1 1 zyx ..
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1 zyx ..

• A minterm must contain 

all variables (in either 

complement or 

uncomplemented form)

• Note variables in a 

minterm are ANDed 

together (conjunction)

• One minterm for each 

term of f that is TRUE

• So         is a minterm but      is notzyx .. zy.
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Disjunctive Normal Form

• A Boolean function expressed as the 

disjunction (ORing) of its minterms is said 

to be in the Disjunctive Normal Form (DNF)

• A Boolean function expressed as the 

ORing of ANDed variables (not necessarily 

minterms) is often said to be in Sum of 

Products (SOP) form, e.g.,

zyxzyxzyxzyxzyxf .......... 

le truth tabsame  thehave functions Note     .zyxf 

Maxterms

• A maxterm of n Boolean variables is the 
disjunction (ORing) of all the variables either 
in complemented or uncomplemented form.

– Referring back to the truth table for f, we can 
write,

Applying De Morgan (and complementing) gives

So it can be seen that the maxterms of    are 
effectively the minterms of     with each variable 
complemented

zyxzyxzyxf ...... 

)).().(( zyxzyxzyxf 
f

f
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Conjunctive Normal Form

• A Boolean function expressed as the 

conjunction (ANDing) of its maxterms is said 

to be in the Conjunctive Normal Form (CNF)

• A Boolean function expressed as the ANDing 

of ORed variables (not necessarily maxterms) 

is often said to be in Product of Sums (POS) 

form, e.g.,

)).().(( zyxzyxzyxf 

)).(( zxyxf 

Logic Simplification

• As we have seen previously, Boolean 

algebra can be used to simplify logical 

expressions. This results in easier 

implementation

Note: The DNF and CNF forms are not 

simplified.

• However, it is often easier to use a 

technique known as Karnaugh mapping
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Karnaugh Maps

• Karnaugh Maps (or K-maps) are a 
powerful visual tool for carrying out 
simplification and manipulation of logical 
expressions having up to 5 variables

• The K-map is a rectangular array of 
cells

– Each possible state of the input variables 
corresponds uniquely to one of the cells

– The corresponding output state is written in 
each cell

K-maps example

x y z f

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

• From truth table to K-map

y z

1100 01 10

0

1

x

1 1 11

1x

z

y

Note that the logical state of the 

variables follows a Gray code, i.e., 

only one of them changes at a time

The exact assignment of variables in 

terms of their position on the map is 

not important
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K-maps example
• Having plotted the minterms, how do we 

use the map to give a simplified 

expression?
• Group terms

• Having size equal to a power of 

2, e.g., 2, 4, 8, etc.

• Large groups best since they 

contain fewer variables

• Groups can wrap around edges 

and corners

y z

1100 01 10

0

1

x

1 1 11

1x

z

yx zy.

So, the simplified func. is,

 .zyxf  as before

K-maps – 4 variables
• K maps from Boolean expressions

– Plot    ... dcbbaf 

1100 01 10

00

01

11

10

ba 
dc 

1 1 1 1

1
a

b

c

d

• See in a 4 variable map:
– 1 variable term occupies 8 cells

– 2 variable terms occupy 4 cells

– 3 variable terms occupy 2 cells, etc.
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K-maps – 4 variables

• For example, plot

 bf   .dbf 

1100 01 10

00

01

11

10

ba 
dc 

1

1

1

1
a

b

c

d

1100 01 10

00

01

11

10

ba 
dc 

1

11 11

a

b

c

d

111

K-maps – 4 variables

• Simplify,  ........ dcdcbadcbdbaf 

1100 01 10

00

01

11

10

ba 
dc 

1

a

b

c

d

11

1

1

1

1

ba.
dc.

So, the simplified func. is,

 .. dcbaf 
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POS Simplification
• Note that the previous examples have 

yielded simplified expressions in the 
SOP form

– Suitable for implementations using AND 
followed by OR gates, or only NAND gates 
(using DeMorgans to transform the result –
see previous Bubble logic slides)

• However, sometimes we may wish to 
get a simplified expression in POS form

– Suitable for implementations using OR 
followed by AND gates, or only NOR gates

POS Simplification

• To do this we group the zeros in the map

– i.e., we simplify the complement of the function

• Then we apply DeMorgans and 

complement

• Use ‘bubble’ logic if NOR only 

implementation is required
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POS Example

• Simplify                       into POS form. ... dcbbaf 

1100 01 10

00

01

11

10

ba 
dc 

1 1 1 1

1
a

b

c

d

Group 

zeros

1100 01 10

00

01

11

10

ba 
dc 

1 1 1 1

1
a

b

c

d

0 0 0 0

0 0 0

0 0 0 0

b da. ca.

 .. dacabf 

POS Example

• Applying DeMorgans to 
 .. dacabf 

 )).(.( dacabf 

 )).(.( dacabf 

f

a

c

a

d

b

f

a

c

a

d

b

gives,

f

a

c

a

d

b
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Expression in POS form

• Apply DeMorgans and take 

complement, i.e.,    is now in SOP form

• Fill in zeros in table, i.e., plot

• Fill remaining cells with ones, i.e., plot 

• Simplify in usual way by grouping ones 

to simplify 

 f

 f

f

f

Don’t Care Conditions

• Sometimes we do not care about the 
output value of a combinational logic 
circuit, i.e., if certain input combinations 
can never occur, then these are known 
as don’t care conditions.

• In any simplification they may be treated 
as 0 or 1, depending upon which gives 
the simplest result.

– For example, in a K-map they are entered 
as Xs
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Don’t Care Conditions - Example

• Simplify the function  ...... dcadcadbaf 

With don’t care conditions,  ... ,... ,... dcbadcbadcba

1100 01 10

00

01

11

10

ba 
dc 

1

a

b

c

d

X 1

1

1

1

X

X

ba.
dc.

dcbaf .. 

See only need to include 

Xs if they assist in making 

a bigger group, otherwise 

can ignore.

or, dcdaf .. 

Some Definitions
• Cover – A term is said to cover a minterm if that 

minterm is part of that term

• Prime Implicant – a term that cannot be further 

combined

• Essential Prime Implicant – a prime implicant 

that covers a minterm that no other prime 

implicant covers

• Covering Set – a minimum set of prime 

implicants which includes all essential terms plus 

any other prime implicants required to cover all 

minterms
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Some Definitions - Example

Prime implicants

Essential prime 

implicants

Covering set

b

1 10 0 0 1 1 0

0 0

0 1

1 1

1 0

ba 
dc 

1

a

c

d

1

1

1

1

1

11

1

1

Tabular Simplification

• Except in special cases or for sparse truth 

tables, the K-map method is not practical 

beyond 6 variables

• A systematic approach known as the Quine-

McCluskey (Q-M) Method finds the minimised 

representation of any Boolean expression

• It is a tabular method that ensures all the 

prime implicants are found and can be 

automated for use on a computer
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Q-M Method

• The Q-M Method has 2 steps:

– First a table, known as the QM implication table, is 

used to find all the prime implicants;

– Next the minimum cover set is found using the 

prime implicant chart.

• We will use a 4 variable example to show the 

method in operation:

– Minterms are: 4,5,6,8,9,10,13

– Don’t cares are: 0,7,15.

Q-M Method

• The first step is to list all the minterms and 

don’t cares in terms of their minterm indices 

represented as a binary number

– Note the entries are grouped according to the 

number of 1s in the binary representation

– The 1st column contains the minterms

– After applying the method, the 2nd column will 

contain 3 variable terms. Similarly for subsequent 

columns.
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Q-M Method

• The method begins by listing groups of 

minterms and don’t cares in groups 

containing ascending numbers of 1s with a 

blank line between the groups

– Thus the first group has zero ones, the second 

group has a single 1 and the third has two 1s and 

so on

• We next apply the so called uniting theorem 

iteratively as follows

Q-M Method – Uniting Theorem
– Compare elements in the 1st group (no 1s) with all 

elements in the 2nd group. If they differ by a single 

bit, it means the terms are adjacent (think K-map)

– Adjacent terms are placed in the 2nd column with 

the single bit that differs replaced by a dash (-).  

Terms in the 1st column that contribute to a term in 

the second are ticked, i.e., they are not prime 

implicants.

– Now repeat for the groups in the 2nd column

– As before groups must differ only by a single bit 

but they must also have a – in the same position

– Groups in 2nd column that do not contribute to the 

3rd column are marked with an asterix (*), i.e., they 

are prime implicants
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Q-M – Implication Table

Column 1

0 1 0 0
1 0 0 0

0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0

0 1 1 1
1 1 0 1

1 1 1 1

Column 2

0 0 0 0



















0 - 0 0 *
- 0 0 0 *

0 1 0 - 
0 1 - 0
1 0 0 - *
1 0 - 0 *

0 1 - 1
- 1 0 1
0 1 1 - 
1 - 0 1 *

- 1 1 1
1 1 - 1

0 1 - - *

- 1 - 1 *

Column 3

– Minterms are: 4,5,6,8,9,10,13

– Don’t cares are: 0,7,15.

K-map view of Q-M example

Col. 2 adjacent 

minterms

b

1 10 0 0 1 1 0

0 0

0 1

1 1

1 0

ba 
dc 

1
a

c

d

1

1

1

X

11 1

1

X

X
Col. 2 * adjacent 

minterms, i.e., 

prime implicants

Col. 3 prime 

implicants
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Q-M – Finding Min Cover

– The second step is to find the lowest number of 

prime implicants that cover the function – this is 

achieved using the prime implicant chart

– This chart is organised as follows:

• Label columns with the minterm indices (don’t include 

don’t cares)

• Label rows with minterms covered by a given prime 

implicant. To do this dashes (-) in a prime implicant are 

replaced by all combinations of 0s and 1s

• Place an X in the (row, column) location if the minterm 

represented by the column index is covered by the prime 

implicant associated with the row

• The next slide shows the initial prime implicant chart

Q-M – Prime Implicant Chart
4 5 6 8 9 10 13

0,4 (0-0 0)

0,8 (- 0 00)

8,9 (100 -)

8,10(10 - 0)

9,13(1-0 1)

4,5,6,7(01 - -)

5,7,13,15 (- 1 - 1)

X

X

X X

X X

X X

X X X

X X

• Now we look for the essential prime implicants –

These are indicated when there is only a single X in 

any column, i.e., This means there is a minterm

covered by one and only prime implicant

* Terms in 

Implication 

Table

Minterms (exc. 

don’t cares)
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Q-M – Prime Implicant Chart
• The essential terms must be included in the final cover

– Draw lines in the column and row that have a X associated with 

an essential prime implicant and draw a box around the prime

– These minterms are already covered by the essential primes

4 5 6 8 9 10 13

0,4 (0-0 0)

0,8 (- 0 00)

8,9 (100 -)

8,10(10 - 0)

9,13(1-0 1)

4,5,6,7(01 - -)

5,7,13,15 (- 1 - 1)

X

X

X X

X X

X X

X X X

X X

Q-M – Prime Implicant Chart
• The essential prime implicants usually cover additional 

minterms.

– We must also cross out any columns that have an X in a row 

associated with an essential prime since these minterms are 

already covered by the essential primes

4 5 6 8 9 10 13

0,4 (0-0 0)

0,8 (- 0 00)

8,9 (100 -)

8,10(10 - 0)

9,13(1-0 1)

4,5,6,7(01 - -)

5,7,13,15 (- 1 - 1)

X

X

X X

X X

X X

X X X

X X
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Q-M – Prime Implicant Chart
• We see 2 minterms are still uncovered (cols. 9 and 13)

– The final step is to find as few primes as possible to cover the 

remaining minterms

– We see the single prime implicant 1-01 covers both of them

– The boxed terms show the final covering set

4 5 6 8 9 10 13

0,4 (0-0 0)

0,8 (- 0 00)

8,9 (100 -)

8,10(10 - 0)

9,13(1-0 1)

4,5,6,7 (01 - -)

5,7,13,15 (- 1 - 1)

X

X

X X

X X

X X

X X X

X X

Final K-Map view of Q-M Example

b

1 10 0 0 1 1 0

0 0

0 1

1 1

1 0

ba 
dc 

1
a

c

d

1

1

1

X

11 1

1

X

X

Selected prime 

implicant to 

complete covering 

set

Essential prime 

implicant
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Binary Adders

Binary Adding Circuits

• We will now look at how binary addition 

may be implemented using combinational 

logic circuits. We will consider:

– Half adder

– Full adder

– Ripple carry adder
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Half Adder
• Adds together two, single bit binary 

numbers a and b (note: no carry input)

• Has the following truth table:
a cout

0
1

b

0
0
1 0

1
0
0
0

1 1

sum

0
1
1
0

a

b cout

sum

• By inspection:
bababasum   ..

bacout .

Full Adder

• Adds together two, single bit binary 

numbers a and b (note: with a carry input)

a

b cout

sum

cin

• Has the following truth table:
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Full Adder

a coutb sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 10

0
0
0

0
1
0

0
1 0
1 11

1
1
1

1
1
1
0

1
0
0
1

)...()...(

........

babacbabacsum

bacbacbacbacsum

inin

inininin





From DeMorgan

)..(

)....(

)).((..

abba

bbabbaaa

babababa







So,

bacxcxcxcsum

babacbabacsum

inininin

inin





..

)..(.)...(

Full Adder
a coutb sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 10

0
0
0

0
1
0

0
1 0
1 11

1
1
1

1
1
1
0

1
0
0
1

bacbbcbac

bacbcbac

bacbacbac

bacbacccbac

bacbacbacbacc

ininout

ininout

ininout

ininininout

ininininout

..)).(.(

..)..(

.....

....).(.

........











).(.

...

.)).(.(.)..(

abcabc

cacbabc

caaacabcaacabc

inout

ininout

ininininout






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Full Adder
• Alternatively,

a coutb sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 10

0
0
0

0
1
0

0
1 0
1 11

1
1
1

1
1
1
0

1
0
0
1

babacc

ccbababacc

bacbacbacbacc

inout

inininout

ininininout

.).(

).(.)...(

........







• Which is similar to previous expression 

except with the OR replaced by XOR

Ripple Carry Adder
• We have seen how we can implement a 

logic to add two, one bit binary numbers 

(inc. carry-in).

• However, in general we need to add 

together two, n bit binary numbers.

• One possible solution is known as the 

Ripple Carry Adder

– This is simply n, full adders cascaded 

together
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Ripple Carry Adder

a0 b0c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

• Example, 4 bit adder

• Note: If we complement a and set co to 

one we have implemented abs 

To Speed up Ripple Carry Adder

• Abandon compositional approach to the adder 
design, i.e., do not build the design up from 
full-adders, but instead design the adder as a 
block of 2-level combinational logic with 2n
inputs (+1 for carry in) and n outputs (+1 for 
carry out).

• Features

– Low delay (2 gate delays)

– Need some gates with large numbers of inputs 
(which are not available)

– Very complex to design and implement (imagine 
the truth table!
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To Speed up Ripple Carry Adder

• Clearly the 2-level approach is not 
feasible

• One possible approach is to make use 
of the full-adder blocks, but to generate 
the carry signals independently, using 
fast carry generation logic

• Now we do not have to wait for the carry 
signals to ripple from full-adder to full-
adder before output becomes valid

Fast Carry Generation
a0 b0c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

Conventional 

RCA

Fast Carry 

Adder

a0 b0c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

Fast Carry Generation

c0 c1 c2 c3
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Fast Carry Generation

• We will now determine the Boolean 

equations required to generate the fast 

carry signals

• To do this we will consider the carry out 

signal, cout, generated by a full-adder 

stage (say i), which conventionally gives 

rise to the carry in (cin) to the next stage, 

i.e., ci+1.

Fast Carry Generation

a b sici

0 00 0

1 10 10

1 00 01

100 01

0

1 0

1 11

1

1

1

1

0

101 10

0 01 01

ci+1

Carry out same as carry in.

Call this carry propagate

Carry out generated 

independently of carry in.

Call this carry generate

Carry out always zero.

Call this carry kill

iii bag .

iii bap 

iii bak .

Also (from before), iiii cbas 
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Fast Carry Generation

• Also from before we have,
).(.1 iiiiii bacbac 

or alternatively,

).(.1 iiiiii bacbac 

Using previous expressions gives,

iiii pcgc .1 

So,

iiiiiii

iiiiii

iiii

cppgpgc

pcgpgc

pcgc

...

)..(

.

1112

112

1112













Fast Carry Generation

Similarly,

iiiiiiiiii

iiiiiiii

iiii

cpppgpgpgc

pcgpgpgc

pcgc

...)..(

))..(.(

.

1211223

11223

2223













and

iiiiiiiiiiiii

iiiiiiiiiiii

iiii

cppppgpgpgpgc

cpppgpgpgpgc

pcgc

....))..(.(

)...)..(.(

.

1231122334

121122334

3334












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Fast Carry Generation

• So for example to generate c4, i.e., i = 0,

04

0012301122334 ....))..(.(

PcGc

cppppgpgpgpgc





where,

0123

0112233

...

))..(.(

ppppP

gpgpgpgG





• See it is quick to evaluate this function 

Fast Carry Generation

• We could generate all the carrys within an 

adder block using the previous equations

• However, in order to reduce complexity, a 

suitable approach is to implement say 4-bit 

adder blocks with only c4 generated using 

fast generation. 

– This is used as the carry-in to the next 4-bit 

adder block

– Within each 4-bit adder block, conventional RCA 

is used
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Fast Carry Generation

a0 b0c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

Fast Carry Generation

c0

Fast Carry Generation

• Conventional ripple carry within 4-bit blocks

• Fast carry generation between 4-bit blocks

• Trade-off between complexity and speed
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Combinational Logic Design

Further Considerations

Multilevel Logic

• We have seen previously how we can 
minimise Boolean expressions to yield 
so called ‘2-level’ logic implementations, 
i.e., SOP (ANDed terms ORed together) 
or POS (ORed terms ANDed together)

• Note also we have also seen an 
example of ‘multilevel’ logic, i.e., full 
adders cascaded to form a ripple carry 
adder – see we have more than 2 gates 
in cascade in the carry chain
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Multilevel Logic

• Why use multilevel logic?

– Commercially available logic gates usually 

only available with a restricted number of 

inputs, typically, 2 or 3.

– System composition from sub-systems 

reduces design complexity, e.g., a ripple 

adder made from full adders

– Allows Boolean optimisation across multiple 

outputs, e.g., common sub-expression 

elimination

Building Larger Gates

• Building a 6-input OR gate
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Common Expression Elimination

• Consider the following minimised SOP 

expression:

gfecfdcfebfdbfeafdaz  ............

• Requires:

• Six, 3 input AND gates, one 7-input 

OR gate – total 7 gates, 2-levels

• 19 literals (the total number of times 

all variables appear)

• We can recursively factor out common literals

Common Expression Elimination

gfedcbaz

gfecbadcbaz

gfecdcebdbeadaz

gfecfdcfebfdbfeafdaz









).).((

).).().((

).......(

............

• Now express z as a number of equations in 2-

level form:

cbax  edy  gfyxz  ..

• 4 gates, 9 literals, 3-levels
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Gate Propagation Delay

• So, multilevel logic can produce reductions 
in implementation complexity. What is the 
downside?

• We need to remember that the logic gates 
are implemented using electronic 
components (essentially transistors) which 
have a finite switching speed.

• Consequently, there will be a finite delay 
before the output of a gate responds to a 
change in its inputs – propagation delay

Gate Propagation Delay

• The cumulative delay owing to a number of 

gates in cascade can increase the time 

before the output of a combinational logic 

circuit becomes valid

• For example, in the Ripple Carry Adder, the 

sum at its output will not be valid until any 

carry has ‘rippled’ through possibly every full 

adder in the chain – clearly the MSB will 

experience the greatest potential delay
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Gate Propagation Delay

• As well as slowing down the operation of 
combinational logic circuits, gate delay can 
also give rise to so called ‘Hazards’ at the 
output

• These Hazards manifest themselves as 
unwanted brief logic level changes (or 
glitches) at the output in response to 
changing inputs

• We will now describe how we can address 
these problems

Hazards

• Hazards are classified into two types, 

namely, static and dynamic

• Static Hazard – The output undergoes a 

momentary transition when one input 

changes when it is supposed to remain 

unchanged

• Dynamic Hazard – The output changes 

more than once when it is supposed to 

change just once
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Timing Diagrams

• To visually represent Hazards we will use the 

so called ‘timing diagram’

• This shows the logical value of a signal as a 

function of time, for example the following 

timing diagram shows a transition from 0 to 1 

and then back again

Logic ‘0’

Time

Logic ‘1’

Timing Diagrams

• Note that the timing diagram makes a number 

simplifying assumptions (to aid clarity) 

compared with a diagram which accurately 

shows the actual voltage against time

– The signal only has 2 levels. In reality the signal 

may well look more ‘wobbly’ owing to electrical 

noise pick-up etc.

– The transitions between logic levels takes place 

instantaneously, in reality this will take a finite 

time.
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Static Hazard

Logic ‘0’

Time

Logic ‘1’

Static 1 hazard

Logic ‘0’

Time

Logic ‘1’ Static 0 hazard

Dynamic Hazard

Logic ‘0’

Time

Logic ‘1’

Dynamic hazard

Logic ‘0’

Time

Logic ‘1’

Dynamic hazard
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Static 1 Hazard
x

y

z

t

u

v

w

y

t

u

v

w

This circuit implements,

yzyxw .. 

Consider the output when         

and    changes from 1 to 0

1 xz
y

Hazard Removal

• To remove a 1 hazard, draw the K-map 
of the output concerned. Add another 
term which overlaps the essential terms

• To remove a 0 hazard, draw the K-map 
of the complement of the output 
concerned. Add another term which 
overlaps the essential terms 
(representing the complement)

• To remove dynamic hazards – not 
covered in this course!
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Removing the static 1 hazard
yzyxw .. 

y z

1100 01 10

0

1

x

1

1

1 1x

z

y

Extra term added to remove 

hazard, consequently,

zxyzyxw ... 

x

y

z

w

Beyond Simple Logic Gates

• Multiplexor (Mux)/selector – chooses 

1 of many inputs to steer to its single 

output under the direction of control 

inputs, e.g., if the input to a circuit can 

come from several places a Mux is one 

way to funnel the multiple sources 

selectively to the single ouput.
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Multiplexor
• The hazard example is actually a 2-to-1 (2:1) 

Mux, i.e., it can select either input x or z to 

appear at output w under control of y

x
y

z

w x yz

0 0 0 0
0 1 0 1
1 0 0 0
1 1 0 1
0 0 1 0
0 1 1 0
1 0 1 1
1 1 1 1

w

Mux
x

y

z
w

x

z
w

y

Multiplexor
• Clearly an n-to-1 (n:1) Mux is also possible. 

For example, an 8-to-1 (8:1) Mux will need 

3 control inputs.

• A Mux can also be used to implement 

combinational logic functions. For example, 

an 8 input Mux can be used to implement 

functions having 3 variables expressed as 

a sum of minterms, i.e., DNF.

zyxzyxzyxzyxzyxf .......... 
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Multiplexor
zyxzyxzyxzyxf ........ 

f

1
0
1

1
1

0

0
0

I0
I1
I2

I3

I4
I5
I6
I7

F

S2 S1S0

x y z

• The control inputs are used to select the 

minterms required at the output.  The Mux is 

sometimes called a hardware look-up table.

Multiplexor

yxzyxyxf

zzyxzyxyxf

zyxzyxzyxzyxf

.)...(

).(.)...(

........







• In this example if we use one of the inputs as 

a variable, then we can get away with a 4-to-1 

(4:1) Mux

f
0
1

I0
I1
I2

I3

F

S1 S0

x y

z
z
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Multiplexor
• We see it can also be designed via a truth 

table based approach, e.g.,

f
0
1

I0
I1
I2

I3

F

S1 S0

x y

z
z

x y z

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

f

z0I

z1I

0I2 

1I3 

Demultiplexor
• A demultiplexor is the opposite of a Mux, 

i.e., a single input is directed to exactly 

one of its outputs

• The truth table for a 1-to-2 (1:2) Demux

(i.e., 1 control input and 2 outputs is:

f0
g

O0
I0

S0

x

O1 f1

g

x
f0

f1

g x

0 0 0 0
1 0 1 0
0 1 0 0
1 1 0 1

0f 1f
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Demultiplexor
• Clearly a larger Demux are also possible. 

For example, a 3-to-8 (3:8) Demux has 3 

control inputs and 8 outputs.

• A related function is a Decoder. In this 

case the input g is permanently connected 

to a logic 1. This yields a 1-of-2 decoder 

(also known as a 1:2 decoder)
g x

0 0 0 0
1 0 1 0
0 1 0 0
1 1 0 1

0f 1f

g =1

x

0 1 0
1 0 1

0f 1f

• See only one output is logic 1 at a time

Decoder
• Clearly an 1-of-n Decoder is possible. For 

example, a 1-of-8 Decoder (i.e., a 3:8 

decoder) has 3 control inputs and 8 outputs.

• A typical application would be to ‘Enable 

(EN)’ 1 out-of-n logic sub-systems.

O0
O1
O2

O3

O4
O5
O6

O7

S2

S1

S0
x

y

z

EN System 0

EN System 1

EN System 7

• So, letting 

x=1, y=z=0 

will enable 

System 1
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Decoder
• We can see that a 1-of-n Decoder will 

generate all the possible minterms having 

n variables.

• Consequently, a logical expression having 

DNF form can be implemented by ORing

together the required minterms at the 

decoder output.

• Multiple output logic blocks can be created 

by using multiple OR gates at the decoder 

output, i.e., one for each output.

Decoder

O0
O1
O2

O3

O4
O5
O6

O7

S2

S1

S0
x

y

z

xyzxyzxyzf ......0 

xyzxyzf ....1 

• Decoder implementation of a 3 variable, 2 

output combinational logic block.

Additional OR gates 

to give more 

outputs if required
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Even More Ways to Implement 

Combinational Logic

• We have seen how combinational logic 

can be implemented using logic gates 

(e.g., AND, OR), Mux and Demux.

• However, it is also possible to generate 

combinational logic functions using 

memory devices, e.g., Read Only 

Memories (ROMs)

ROM Overview

• A ROM is a data storage device:

– Usually written into once (either at manufacture or 
using a programmer)

– Read at will

– Essentially is a look-up table, where a group of 
input lines (say n) is used to specify the address 
of locations holding m-bit data words

– For example, if n = 4, then the ROM has 24 = 16 
possible locations. If m = 4, then each location 
can store a 4-bit word

– So, the total number of bits stored is            , i.e., 
64 in the example (very small!) ROM

nm 2
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ROM Example

data

x y z f

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

address 

(decimal)

0
1
2
3
4
5
6
7

D0D1D2D3

X X X 1
X X X 1
X X X 1
X X X 1
X X X 0
X X X 0
X X X 0
X X X 1

64-bit 

ROM

A0

A1

A2

A3

D0

D1

D2

D3

address data
z
y
x
'0'

Design amounts to putting 

minterms in the appropriate 

address location

No logic simplification 

required

Useful if multiple Boolean 

functions are to be 

implemented, e.g., in this 

case we can easily do up to 

4, i.e., 1 for each output line

Reasonably efficient if lots of 

minterms need to be 

generated

ROM Implementation
• Can be quite inefficient, i.e., become large in 

size with only a few non-zero entries, if the 
number of minterms in the function to be 
implemented is quite small

• Devices which can overcome these problems 
are known as programmable logic array (PLA)

• In PLAs, only the required minterms are 
generated using a separate AND plane. The 
outputs from this plane are ORed together in 
a separate OR plane to produce the final 
output
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Basic PLA Structure

Programmed by 

selectively removing 

connections in the AND 

and OR planes –

controlled by fuses or 

memory bits

f0

a

c

b

f1

f2

AND plane

OR plane

Other PLA Style Structures
• In PLAs, only the required minterms are 

generated using a separate AND plane. 
Output from this plane are available to all OR 
gates to give the final output

• A modified structure known as Programmable 
Array Logic (PAL) does not have a 
programmable OR array and so outputs from 
the AND array can not be shared among the 
OR gates to give the final outputs.

• This simplifies the structure, but at the cost of 
lower efficiency



01/08/2019

66

Basic PAL Structure

f0

a

c

b

fn

AND 

plane

OR 

plane

Other Memory Devices

• Non-volatile storage is offered by ROMs (and 

some other memory technologies, e.g., 

FLASH), i.e., the data remains intact, even 

when the power supply is removed

• Volatile storage is offered by Static Random 

Access Memory (SRAM) technology

– Data can be written into and read out of the 

SRAM, but is lost once power is removed
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Memory Application

• Memory devices are often used in computer 
systems

• The central processing unit (CPU) often 
makes use of busses (a bunch of wires in 
parallel) to access external memory devices

• The address bus is used to specify the 
memory location that is being read or written 
and the data bus conveys the data too and 
from that location

• So, more than one memory device will often 
be connected to the same data bus

Bus Contention

• In this case, if the output from the data pin of 

one memory was a 0 and the output from the 

corresponding data pin of another memory 

was a 1, the data on that line of the data bus 

would be invalid 

• So, how do we arrange for the data from 

multiple memories to be connected to the 

some bus wires?
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Bus Contention

• The answer is:

– Tristate buffers (or drivers)

– Control signals

• A tristate buffer is used on the data output of 
the memory devices

– In contrast to a normal buffer which is either 1 
or 0 at its output, a tristate buffer can be 
electrically disconnected from the bus wire, i.e., 
it will have no effect on any other data currently 
on the bus – known as the ‘high impedance’
condition

Tristate Buffer

Output Enable 

(OE) = 1

OE = 0

Bus line

OE = 1

Bus line

OE = 0

Symbol Functional 

analogy
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Control Signals

• We have already seen that the memory 
devices have an additional control input (OE) 
that determines whether the output buffers are 
enabled.

• Other control inputs are also provided:

– Write enable (WE). Determines whether data is 
written or read (clearly not needed on a ROM)

– Chip select (CS) – determines if the chip is 
activated

• Note that these signals can be active low, 
depending upon the particular device


