Denotational Semantics

10 lectures for Part II CST 2019/20

Marcelo Fiore

Course web page:

http://www.cl.cam.ac.uk/teaching/1920/DenotSem/

Topic 1

Introduction

What is this course about?

General area.

Formal methods: Mathematical techniques for the specification, development, and verification of software and hardware systems.

Specific area.

Formal semantics: Mathematical theories for ascribing meanings to computer languages.

Why do we care?

- Rigour.
 - ... specification of programming languages
 - ... justification of program transformations
- Insight.
 - ... generalisations of notions computability
 - ... higher-order functions
 - ... data structures

- Feedback into language design.
 - ... continuations
 - ... monads
- Reasoning principles.
 - ... Scott induction
 - ... Logical relations
 - ... Co-induction

Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the *steps* of computation they can take during program execution.

Axiomatic.

Meanings for program phrases defined indirectly via the *ax-ioms and rules* of some logic of program properties.

Denotational.

Concerned with giving *mathematical models* of programming languages. Meanings for program phrases defined abstractly as elements of some suitable mathematical structure.

Basic idea of denotational semantics

Syntax $\stackrel{\llbracket-\rrbracket}{\longrightarrow}$ Semantics

P \(\mathbb{P} \mathbb{P} \]

Examples

Prop. Formla \(\mathbb{P} \)

Truth value

Par hal sec. \(\mathred{N} \)

Annohan \(\mathred{N} \)

Basic idea of denotational semantics

Concerns:

- Abstract models (i.e. implementation/machine independent).
 - \sim Lectures 2, 3 and 4.
- Compositionality.
 - \rightsquigarrow Lectures 5 and 6.
- Relationship to computation (e.g. operational semantics).

Characteristic features of a denotational semantics

- Each phrase (= part of a program), P, is given a denotation,
 [P] a mathematical object representing the contribution of P to the meaning of any complete program in which it occurs.
- The denotation of a phrase is determined just by the denotations of its subphrases (one says that the semantics is compositional).

Basic example of denotational semantics (I)

Arithmetic expressions

$$A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A+A \mid \dots$$
 where n ranges over *integers* and L over a specified set of *locations* L

Boolean expressions

$$B \in \mathbf{Bexp} ::= \mathbf{true} \mid \mathbf{false} \mid A = A \mid \dots$$

Commands

$$C \in \mathbf{Comm}$$
 ::= $\mathbf{skip} \mid L := A \mid C; C$
 $\mid \mathbf{if} \ B \ \mathbf{then} \ C \ \mathbf{else} \ C$

Basic example of denotational semantics (II)

A-E-Aexp Semantic functions A[A]: State >Z $\mathcal{A}: \mathbf{Aexp} \to (State \to \mathbb{Z})$ the set of functions from the set of states to the set of makers. $\mathbb{Z} = \{..., -1, 0, 1, ...\}$ where The set of locations. Then for a weakin LEIL, SLL) E-72 is the value of L in states.

Basic example of denotational semantics (II)

Semantic functions

```
\mathcal{A}: \ \mathbf{Aexp} \to (State \to \mathbb{Z}) \mathcal{B}: \ \mathbf{Bexp} \to (State \to \mathbb{B}) \mathcal{C}: \ \mathbf{Comm} \to (State \to State) where \mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\} \text{ State to Shite.} \mathbb{B} = \{true, false\} State = (\mathbb{L} \to \mathbb{Z})
```

Basic example of denotational semantics (III)

Syntax Semantic function A $A[n] = \lambda s \in State. n$ $\mathcal{A}[\![L]\!] = \lambda s \in State.s(L)$ $A[A_1 + A_2] = \lambda s \in State. A[A_1](s) + A[A_2](s)$ sensatis (addition)

Basic example of denotational semantics (IV)

Semantic function \mathcal{B}

$$\mathcal{B}[\![\mathbf{true}]\!] = \lambda s \in State.\ true$$
 $\mathcal{B}[\![\mathbf{false}]\!] = \lambda s \in State.\ false$
 $\mathcal{B}[\![A_1 = A_2]\!] = \lambda s \in State.\ eq(\mathcal{A}[\![A_1]\!](s), \mathcal{A}[\![A_2]\!](s))$
where $eq(a, a') = \begin{cases} true & \text{if } a = a' \\ false & \text{if } a \neq a' \end{cases}$

Basic example of denotational semantics (V)

NB: From now on the names of semantic functions are omitted!

A simple example of compositionality

Given partial functions $\llbracket C \rrbracket$, $\llbracket C' \rrbracket$: $State \rightarrow State$ and a function $\llbracket B \rrbracket$: $State \rightarrow \{true, false\}$, we can define

$$[\![\mathbf{if}\ B\ \mathbf{then}\ C\ \mathbf{else}\ C']\!] = \\ \lambda s \in State.\ if([\![B]\!](s), [\![C]\!](s), [\![C']\!](s))$$

where

$$if(b, x, x') = \begin{cases} x & \text{if } b = true \\ x' & \text{if } b = false \end{cases}$$

Basic example of denotational semantics (VI)

Semantic function \mathcal{C}

$$\llbracket L := A \rrbracket = \lambda s \in State. \ \lambda \ell \in \mathbb{L}. \ if (\ell = L, \llbracket A \rrbracket(s), s(\ell))$$

Denotational semantics of sequential composition

Denotation of sequential composition C; C' of two commands

$$\llbracket C; C' \rrbracket = \llbracket C' \rrbracket \circ \llbracket C \rrbracket = \lambda s \in State. \llbracket C' \rrbracket \big(\llbracket C \rrbracket (s) \big)$$

given by composition of the partial functions from states to states

 $[\![C]\!], [\![C']\!]: State \longrightarrow State$ which are the denotations of the

commands.

$$skip; C \equiv C \equiv C; skip$$

 $(C_1; C_2); G \equiv C_1; (C_2; G)$

$$ido f = f = fo id$$

 $(f_1 \circ f_2) \circ f_3 = f_1 \circ (f_2 \circ f_3)$

Denotational semantics of sequential composition

Denotation of sequential composition C; C' of two commands

$$\llbracket C; C' \rrbracket = \llbracket C' \rrbracket \circ \llbracket C \rrbracket = \lambda s \in State. \llbracket C' \rrbracket \bigl(\llbracket C \rrbracket (s) \bigr)$$

given by composition of the partial functions from states to states $[\![C]\!], [\![C']\!]: State \longrightarrow State$ which are the denotations of the commands.

Cf. operational semantics of sequential composition:

$$\frac{C, s \Downarrow s' \quad C', s' \Downarrow s''}{C; C', s \Downarrow s''}$$

[while $B \operatorname{\mathbf{do}} C$]