Data Science Principles and Practice

Probabilistic machine learning

What we've learnt so far ...

Lecture 2

Supervised Learning

Dataset: $\{\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \langle x_3, y_3 \rangle, \dots, \langle x_M, y_M \rangle\}$

Input instances: $x_1, x_2, x_3, \dots, x_M$

Known (desired) y outputs:

 $y_1, y_2, y_3, \dots, y_M$

Our goal:

Learn the mapping $f: X \to Y$ such that $y_i = f(x_i)$ for all i = 1, 2, 3, ..., M

Regression (lecture 2, 4)

Classification (lecture 3, 4)

Supervised Learning

Loss function

Our goal:

Learn weights θ for a predictor $\hat{y} = f(x; \theta)$ that minimize a loss function. For regression,

loss =
$$\frac{1}{2} \sum_{i=1}^{M} (\hat{y}_i - y_i)^2$$

Unsupervised Learning

Dataset:	$\{x_1, x_2, x_3, \dots, x_M\}$
Input instances:	$x_1, x_2, x_3, \dots, x_M$
Known (desired) outputs:	n/a
Our goal: synt	hesize new instances

similar to those in the dataset

How can we turn this into a gradient descent problem? What loss function? Dataset: a list of craft beer names from untappd.com

Dataset: Flickr-Faces-HQ dataset, https://github.com/NVlabs/ffhq-dataset

Gradient descent can write code better than you. I'm sorry.

1:56 pm - 4 Aug 2017

Probabilistic machine learning (a better way to think of loss functions)

Supervised Learning

Dataset: $\{\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \langle x_3, y_3 \rangle, \dots, \langle x_M, y_M \rangle\}$ Predictors: $x_1, x_2, x_3, \dots, x_M$ Probability mode: $\Pr_Y(y_i | x_i, \theta)$ Observations: $y_1, y_2, y_3, \dots, y_M$ Our goal:Learn θ to maximize $\prod_{i=1}^M \Pr_Y(y_i | x_i, \theta)$

It's up to us to pick a probability model.
Just as it was up to us to pick a loss function. Probabilistic machine learning (a better way to think of loss functions) $\Pr_{y}(y_{i} | x_{i}, \varepsilon, \sigma) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-(y_{i} - f_{\varepsilon}(x_{i}))^{2}/2\sigma^{2}}$

Supervised Learning

 $\{\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \langle x_3, y_3 \rangle, \dots, \langle x_M, y_M \rangle\}$ Dataset: Predictors: $x_1, x_2, x_3, \dots, x_M$ Probability model: $\Pr_{Y}(y_i|x_i, \theta)$ **Observations:** $y_1, y_2, y_3, \dots, y_M$

Learn θ to maximize $\prod_{i=1}^{M} \Pr_{Y}(y_i | x_i, \theta)$ Our goal:

Example: regression $y_i \in \mathbb{R}$ **Observations:** Probability model: $Y_i \sim N(f_{\theta}(x_i), \sigma^2)$ Learn θ and/or σ to maximize ... Our goal:

maximize
$$\prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} \left(\frac{y_i - f_0(x_i)}{2\sigma^2} \right)^2 / 2\sigma^2$$

equivalently, maximize
$$\begin{cases} -\frac{M}{2} \log (2\pi\sigma^2) - \frac{1}{2\sigma^2} \left[\sum_{i=1}^{m} \left(\frac{y_i - f_0(x_i)}{2\sigma^2} \right)^2 \right] \end{cases}$$

the standard loss function for regression Probabilistic machine learning (a better way to think of loss functions)

Supervised Learning

Dataset:	$\{\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \langle x_3, y_3 \rangle, \dots, \langle x_M, y_M \rangle\}$
Predictors:	$x_1, x_2, x_3, \dots, x_M$
Probability model:	$\Pr_Y(y_i x_i,\theta)$
Observations:	$y_1, y_2, y_3, \dots, y_M$
Our goal:	Learn θ to maximize $\prod_{i=1}^{M} \Pr_{Y}(y_{i} x_{i},\theta)$

 $P(Y_{i}=1) = f_{0}(x_{i})$ $P(Y_{i}=0) = 1 - f_{0}(x_{i})$ needs f to be in the range [0,1] Example: binary classification **Observations:** $y_i \in \{0,1\}$ Probability model: $Y_i \sim \overline{\text{Bin}(1, f_{\theta}(x_i))}$ Learn θ to maximize ... Goal:

maximize

$$\sum_{i=1}^{m} \log \begin{cases} f_{\theta}(x_i) & \text{if } y_i = 0 \\ 1 - f_{\theta}(x_i) & \text{if } y_i = 0 \end{cases}$$

$$\sum_{k=1}^{m} \frac{1}{y_i = k} \log g_{\theta}(x_i, k) \quad \text{where}$$

$$g_{e}(x_{i},k) = \langle$$

$$f_{0}(x_{i}) \quad \text{if } k=1$$

$$\sum_{i=1}^{n} f_{0}(x_{i}) \quad \text{if } k=0$$

cross-entropy loss function

Training a neuval neuval neuvosk

maximum likelihood estimation

How to do unsupervised learning with gradient descent

Supervised Learning

Dataset:	$\{\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \langle x_3, y_3 \rangle, \dots, \langle x_M, y_M \rangle\}$
Predictors:	$x_1, x_2, x_3, \dots, x_M$
Probability model:	$\Pr_Y(y_i x_i,\theta)$
Observations:	$y_1, y_2, y_3, \dots, y_M$
Our goal:	Learn θ to maximize $\prod_{i=1}^{M} \Pr_{Y}(y_{i} x_{i}, \theta)$

Unsupervised Learning

Dataset:	$\{x_1, x_2, x_3, \dots, x_M\}$
Predictors:	n/a
Probability model:	$\Pr_X(x_i \theta)$
Observations:	$x_1, x_2, x_3, \dots, x_M$
Our goal:	Learn θ to maximize $\prod_{i=1}^{M} \Pr_{X}(x_{i} \theta)$

Application: name generation

Let the dataset be a collection of names {Øabigail, Øandrew, ...}

Let the letters of a name x be $\emptyset x_1 x_2 \cdots x_n$

MARKOV MODEL Generate each X_j randomly, based on X_{j-1} , and when we hit \Box then stop $\Pr(x_1 \cdots x_n) = P_{\emptyset x_1} P_{x_1 x_2} \cdots P_{x_{n-1} x_n}$ $\emptyset \longrightarrow X_1 \longrightarrow X_2 \longrightarrow \cdots \longrightarrow X_{n-1} \longrightarrow \Box$

HIDDEN MARKOV MODEL

RECURRENT NEURAL NETWORK

 $\begin{array}{l} (X,h) = ([\emptyset],0) \\ \text{while } X. \, \text{last} \neq \Box : \\ (p,h) = f_{\theta}(X. \, \text{last},h) \\ \text{newchar} = random.choice(alphabet, \, \text{prob}=p) \\ X. \text{append(newchar)} \end{array}$

RNN is richer than HMM, because each X_j depends on the entire history $X_1X_2 \cdots X_{j-1}$

RNN is simpler than HMM, because there's less randomness.

We can explicitly write out the probability model $Pr_X(x)$, which we need for training.

 $\Pr(x_1 \cdots x_n) = p_1[x_1] \times p_2[x_2] \times \cdots \times p_n[x_n]$

Evaluating an unsupervised model

Lecture 2

Training goal, summing over the training dataset

$$\max_{\theta} \frac{1}{M} \sum_{i=1}^{M} \log \Pr_X(x_i | \theta)$$

Evaluation metric, summing over the test set

$$\frac{1}{N}\sum_{i=1}^{N}\log\Pr_{X}(x_{i}|\hat{\theta})$$

called the *average log likelihood* (linked to *perplexity*)

Evaluating a probabilistic model

Lecture 2

An underfit model thinks the data is mostly noise An overfit model thinks every last variation is explicable

Evaluating a probabilistic model

loss = - average log lik(data)

Lecture 7

Evaluating a probabilistic model

For an unsupervised model, we can calculate the theoretical lower bound on training loss.

If our model doesn't reach this bound, it's underfitted.

Lecture 7

Early stopping

negative loss
= Av. log likelihood on training dataset
$$\{x_1, \dots, x_m\}$$

= $\frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \sum_{i=1}^{m} \log \Pr_x(x_i \mid 0) \qquad \leq \qquad \frac{1}{m} \sum_{i=1}^{m} \sum_{i=1}^{m}$

The best-fitting distribution is the empirical distribution, which assigns probability 1/M to each datapoint.

- Code for regression
- Code for binary classification
- Code + derivation for multiclass?