
Probabilistic
machine learning

Data Science Principles and Practice

What we’ve learnt so far ...

Supervised Learning

Dataset: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , 𝑥3, 𝑦3 , … , 𝑥𝑀, 𝑦𝑀

Input instances: 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀

Known (desired) 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑀
outputs:

Our goal: Learn the mapping 𝑓: 𝑋 → 𝑌
such that 𝑦𝑖 = 𝑓(𝑥𝑖) for all 𝑖 = 1,2,3, … ,𝑀

Lecture 2 Regression (lecture 2, 4)

Classification (lecture 3, 4)

Supervised Learning

Dataset: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , 𝑥3, 𝑦3 , … , 𝑥𝑀, 𝑦𝑀

Input instances: 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀

Known (desired) 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑀
outputs:

Our goal: Learn the mapping 𝑓: 𝑋 → 𝑌
such that 𝑦𝑖 = 𝑓(𝑥𝑖) for all 𝑖 = 1,2,3, … ,𝑀

Unsupervised Learning

Dataset: 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀

Input instances: 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀

Known (desired) n/a
outputs:

Our goal: synthesize new instances
similar to those in the dataset

Loss function
Our goal: Learn weights 𝜃 for a predictor ො𝑦 = 𝑓 𝑥; 𝜃

that minimize a loss function. For regression,

loss =
1

2

𝑖=1

𝑀

ෝ𝑦𝑖 − 𝑦𝑖
2

How can we turn this
into a gradient
descent problem?
What loss function?

Dataset:
a list of craft beer names from
untappd.com

Dataset:
Flickr-Faces-HQ dataset,
https://github.com/NVlabs/ffhq-dataset

Probabilistic machine learning (a better way to think of loss functions)

Supervised Learning

Dataset: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , 𝑥3, 𝑦3 , … , 𝑥𝑀, 𝑦𝑀

Predictors: 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀

Probability model: Pr𝑌 𝑦𝑖|𝑥𝑖 , 𝜃

Observations: 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑀

Our goal: Learn 𝜃 to maximize ς𝑖=1
𝑀 Pr𝑌(𝑦𝑖|𝑥𝑖 , 𝜃)

It’s up to us to pick a
probability model.

Just as it was up to us to
pick a loss function.

Probabilistic machine learning (a better way to think of loss functions)

Example: regression

Observations: 𝑦𝑖 ∈ ℝ

Probability model: 𝑌𝑖~𝑁(𝑓𝜃 𝑥𝑖 , 𝜎
2)

Our goal: Learn 𝜃 and/or 𝜎 to maximize ...

Supervised Learning

Dataset: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , 𝑥3, 𝑦3 , … , 𝑥𝑀, 𝑦𝑀

Predictors: 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀

Probability model: Pr𝑌 𝑦𝑖|𝑥𝑖 , 𝜃

Observations: 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑀

Our goal: Learn 𝜃 to maximize ς𝑖=1
𝑀 Pr𝑌(𝑦𝑖|𝑥𝑖 , 𝜃)

the standard loss
function for regression

Probabilistic machine learning (a better way to think of loss functions)

Supervised Learning

Dataset: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , 𝑥3, 𝑦3 , … , 𝑥𝑀, 𝑦𝑀

Predictors: 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀

Probability model: Pr𝑌 𝑦𝑖|𝑥𝑖 , 𝜃

Observations: 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑀

Our goal: Learn 𝜃 to maximize ς𝑖=1
𝑀 Pr𝑌(𝑦𝑖|𝑥𝑖 , 𝜃)

Example: binary classification

Observations: 𝑦𝑖 ∈ {0,1}

Probability model: 𝑌𝑖 ~ Bin 1, 𝑓𝜃(𝑥𝑖)

Goal: Learn 𝜃 to maximize ...

cross-entropy loss function

How to do unsupervised learning with gradient descent

Supervised Learning

Dataset: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , 𝑥3, 𝑦3 , … , 𝑥𝑀, 𝑦𝑀

Predictors: 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀

Probability model: Pr𝑌 𝑦𝑖|𝑥𝑖 , 𝜃

Observations: 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑀

Our goal: Learn 𝜃 to maximize ς𝑖=1
𝑀 Pr𝑌(𝑦𝑖|𝑥𝑖 , 𝜃)

Unsupervised Learning

Dataset: 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀

Predictors: n/a

Probability model: Pr𝑋 𝑥𝑖|𝜃

Observations: 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀

Our goal: Learn 𝜃 to maximize ς𝑖=1
𝑀 Pr𝑋(𝑥𝑖|𝜃)

Application: name generation
Let the dataset be a collection of names {∅abigail□, ∅andrew□, ...}

Let the letters of a name 𝑥 be ∅𝑥1𝑥2⋯𝑥𝑛

MARKOV MODEL

Generate each 𝑋𝑗 randomly, based on 𝑋𝑗−1, and when we hit □ then stop

Pr 𝑥1⋯𝑥𝑛 = 𝑃∅𝑥1𝑃𝑥1𝑥2 ⋯𝑃𝑥𝑛−1𝑥𝑛

HIDDEN MARKOV MODEL

Generate a hidden Markov sequence 0𝐻1𝐻2⋯
Generate each 𝑋𝑗 randomly, based on 𝐻𝑗, and when we hit □ then stop

RECURRENT NEURAL NETWORK

𝑋, ℎ = [∅], 0
while 𝑋. last ≠ □ :

𝑝, ℎ = 𝑓𝜃(𝑋. last, ℎ)
newchar = random.choice(alphabet, prob=𝑝)
𝑋.append(newchar)

RNN is richer than HMM, because each 𝑋𝑗 depends on the entire history 𝑋1𝑋2⋯𝑋𝑗−1

RNN is simpler than HMM, because there’s less randomness.

We can explicitly write out the probability model PrX(𝑥), which we need for training.

Pr 𝑥1⋯𝑥𝑛 = 𝑝1 𝑥1 × 𝑝2 𝑥2 ×⋯× 𝑝𝑛[𝑥𝑛]

Evaluating an unsupervised model

Dataset splits

Training Set

for training your models,
fitting the parameters

Dev Set

for hyper-
parameter
selection

Test Set

for realistic
evaluation

Training goal, summing
over the training dataset

max
𝜃

1

𝑀

𝑖=1

𝑀

log Pr𝑋(𝑥𝑖|𝜃)

Evaluation metric, summing
over the test set

1

𝑁

𝑖=1

𝑁

log Pr𝑋(𝑥𝑖| መ𝜃)

Lecture 2

called the
average log likelihood
(linked to perplexity)

Overfitting

Lecture 2

Underfitting

the model is too
simple to fit the
data well

Overfitting

the model is too
complex / has too
many parameters

Evaluating a probabilistic model

An underfit model
thinks the data is
mostly noise

An overfit model
thinks every last
variation is explicable

Evaluating a probabilistic model

For a probabilistic
model, use

loss = - average log lik(data)

Early stopping

Lecture 7

dev data

training time [epochs]

loss

training data

Evaluating a probabilistic model

For an unsupervised model, we
can calculate the theoretical
lower bound on training loss.

If our model doesn’t reach this
bound, it’s underfitted.

Early stopping

Lecture 7

dev data

training time [epochs]

loss

training data

The best-fitting distribution is the
empirical distribution, which assigns
probability 1/𝑀 to each datapoint.

• Code for regression

• Code for binary classification

• Code + derivation for multiclass?

