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Today’s Lecture

� Writing code

� Significance testing

� Ethics

1

Last lecture was more about the principles; this lec-
ture is more about the practice.



Backpropagation

x h1 h2 h3 ŷ

Forward pass

Backward pass
(calculate gradients with chain rule)
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We saw this last lecture. We’ll now look at this in
more detail.



Backpropagation

x ŷ

ŷ = σ(w.x)

L = (ŷ− y)2
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Here is a very simple neural model (only one layer),
with a simple loss function (square error).



Backpropagation
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In this graph, the computation is broken down into
smaller steps. We’re calculating the loss L based on
the input x, network parameters (weights) w, and
desired output y.

We would like to optimise the loss with respect to
each network parameter. The gradient can be cal-
culated using the chain rule. As long as each oper-
ation in the computation graph has a known deriva-
tive, we can calculate each term in the chain rule.
Notice how we need to use the intermediate values
(h1 and h3).

(For σ(x) = (1 + e−x)−1, it is a simple exercise to find
the derivative. It can be written in the above form
for convenience.)



Backpropagation

� Need to store computation graph

� Need to store intermediate values
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The previous slide illustrates why these are neces-
sary.



Autograd

� NumPy with automatic differentiation
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We have already seen NumPy earlier in this course,
so Autograd is useful to learn about automatic dif-
ferentiation without having to also learn a new API.



Autograd

from autograd import numpy, scipy, grad

def forward(x, w):
return scipy.special.expit(numpy.dot(x, w))

def loss_fn(x, y, w):
return (forward(x, w) - y)**2

calculate_w_grad = grad(loss_fn, 2)

w = numpy.random.standard_normal(size=3)
x = numpy.array([.1,.3,.7])
y = 0
w_grad = calculate_w_grad(x, y, w)

7

numpy is imported from autograd. This gives us the
usual numpy objects, but with extra book-keeping
(remember we need the computation graph) so
that we can automatically calculate derivatives.

To implement our previous example, we can write
the functions forward and loss_fn in a normal
NumPy/SciPy way. Note that expit is another name
for the sigmoid/logistic function.

Autograd also gives us the function grad, which
takes a function as input (the function to be dif-
ferentiated) and returns a function as output (the
derivative). The second argument specifies what
we are differentiating with respect to – in this case,
w is argument number 2 of loss_fn.

We can now calculate the gradient, given values for
w, x and y.



TensorFlow

� Automatic differentiation

� Compilation for speed

� Range of architectures

� Range of training algorithms
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In practice, there are other libraries which can do
more than just calculate derivatives.

Apart from TensorFlow, another popular library is
PyTorch.



TensorFlow

import tensorflow as tf

w = tf.Variable(tf.random.normal((3,)))
def forward(x):

return tf.math.sigmoid(tf.math.reduce_sum(w * x))

def loss_fn(x, y):
return (forward(x) - y)**2

x = tf.constant([.1,.3,.7])
y = tf.constant(0.)

with tf.GradientTape() as g:
loss = loss_fn(x, y)

w_grad = g.gradient(loss, w)
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This implements our previous example, in Tensor-
Flow instead of Autograd.

We specify that w is a variable, i.e. something that
we would like to optimise. It doesn’t need to be
passed as an argument, but can be used implicitly,
as shown above.

* does an elementwise product (mapping two vec-
tors to a new vector), and then reduce_sum sums
the values to give a scalar.

We specify x and y as constants, since they are
data, which we can’t change.

To set up the book-keeping to do automatic differ-
entiation, we can use a GradientTape object.



TensorFlow

import tensorflow as tf

w = tf.Variable(tf.random.normal((3,)))
def forward(x):

return tf.math.sigmoid(tf.math.reduce_sum(w * x))

def loss_fn(x, y):
return (forward(x) - y)**2

x = tf.constant([.1,.3,.7])
y = tf.constant(0.)

opt = tf.keras.optimizers.SGD()
opt.minimize(lambda: loss_fn(x,y), var_list=[w])
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In practice, we don’t need to explicitly write code to
calculate gradients. We want the gradients in order
to optimise the model parameters, and TensorFlow
makes this easy for us.

We can instead use an optimizer object (here, using
stochastic gradient descent), simply telling the op-
timizer what the loss is (this must be a function tak-
ing no arguments), and the parameters are (a list
of variables). Running the minimize method auto-
matically does a forward pass and a backward pass,
and makes an update to the parameters.



Summary

� Backpropagation:
� Store computation graph

� Store intermediate values

� Software packages:
� Automatic backpropagation

� Automatic compilation

� Pre-defined architectures

� Pre-defined training algorithms
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Neural Network Research

� Emphasis on empirical performance

� Large number of architectures,
Large number of hyperparameters

� Datasets re-used many times

→ Easy to get inflated results
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The large number of architectures and hyperpa-
rameters means that testing significance is impor-
tant (or should be!) – if we test a large number
of models, some are bound to perform better than
others, just by random variation.

The re-use of datasets means that the field as a
whole may be overfitting, even if each individual
researcher is not.



Significance Testing

Dror et al. (2018) survey of NLP papers:

ACL 2017 TACL 2017

Total papers 196 37

Experimental papers 180 33

– reporting significance 63 (35%) 18 (55%)

– correctly 36 (20%) 15 (45%)
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Dror et al. (2018) survey ACL and TACL papers from
2017, and give recommendations for significance
testing. http://aclweb.org/anthology/P18-1128

Of the papers that report significance incorrectly,
some use an inappropriate test (6 ACL papers), and
some do not state what test they used (21 ACL pa-
pers and 3 TACL papers).

The vast majority of papers are experimental, but
significance testing is not the norm!

http://aclweb.org/anthology/P18-1128


p-Values

� Probability the result would be at least
this extreme, under the null hypothesis

NOT:

� Probability the null hypothesis is true
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Most data scientists have heard of p-values, but
they are often misunderstood!

(In 2018, there was a mistake in the practical notes
for the Part IA course MLRD!)

There are more details on significance testing in the
notes for the Part IB course Foundations of Data
Science. The following slides give a summary and
some practical suggestions.



Statistical Significance Testing

� Decide on a null hypothesis

� Decide on a test statistic

� Decide on a threshold

� Significance level: probability of
incorrectly rejecting null hypothesis
(assuming null hypothesis)

� Power: probability of
correctly rejecting null hypothesis
(assuming alternative hypothesis)
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The null hypothesis formalises the idea that the
method doesn’t work (e.g. it’s no better than the
baseline). The test statistic summarises the results
in single number. (How the null hypothesis and test
statistic are defined will depend on the task.) If the
observed test statistic is too extreme (beyond some
threshold), we reject the null hypothesis.

A p-value is a way to re-express the test statistic
in terms of a probability. Rather than using the
observed test statistic itself, we can calculate the
probability that the statistic would be at least as
extreme as observed.

In data science, the term “significant” should be
reserved for statistical significance. Using the term
loosely is bad practice.



Parametric Tests

� Test statistic follows known distribution
(with known parameters)

� Paired Student’s t-test:
� Paired samples (test datapoints)

� Scores normally distributed

� Null hypothesis: same mean

� Test statistic: t =
p
n

sD
x̄D

� “Student’s t-distribution with
n− 1 degrees of freedom”
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The paired Student’s t-test is a parametric test, be-
cause it assumes that the scores are normally dis-
tributed. It is useful when comparing the results of
two systems on the same data.

x̄D is the average difference between the scores of
the two systems.
sD is the standard deviation of the differences be-
tween scores.
n is the number of datapoints.

We have to divide by the observed standard devi-
ation, because we don’t know what the standard
deviation should be. The resulting distribution is
called Student’s t-distribution, and it looks a bit like
the normal distribution. The details aren’t impor-
tant here – this is a standard test, available in any
reasonable statistics package.



Nonparametric Tests

� No assumptions about distribution

� Sign test:
� Paired samples (test datapoints)

� System A better or system B better

� Null hypothesis: equal chance

� Test statistic: n
� Binomial distribution

17

The sign test is an example of a nonparametric test.
It is useful when comparing two systems, when we
don’t know the distribution of scores – here, we sim-
ply look at which system is better.

n is the number of times system A is better than
system B.

(In the case of ties, we can evenly split the ties be-
tween the two systems, or we can discard them.
Discarding them gives a more powerful test – see
power on slide 15. An alternative is the trinomial
test, which includes the ties as a third outcome.)

Compared to a parametric test, a nonparametric
test is more general (it doesn’t make assumptions),
but less powerful.



Multiple Tests

� If we test many systems, we expect
some will pass

� Bonferroni correction:
� Replace nominal significance level

� α 7→
α

m
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α is the desired significance level, for all tests com-
bined.
m is the number of systems being tested.
α
m is the significance level that should be used for
each individual test.

Further reading:

https://xkcd.com/882/

https://xkcd.com/882/


Base Rate Fallacy

� Evaluate 1000 systems
� 900 similar to baseline

� 100 better than baseline

� Perform statistical test
� Significance level: 5% → 45 pass

� Power: 80% → 80 pass

� Probability system is better, given it
passed the test: 64%
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The base rate fallacy shows why the misunder-
standing about p-values is so dangerous.

Here, the probability that the system is better
than the baseline, given that it passed the test, is
only 64%. This is much lower than 95%!

The reason for this is the base rate, the proportion
of tested systems that are actually better.



Base Rate Fallacy

� Evaluate 1000 systems
� 960 similar to baseline

� 40 better than baseline

� Perform statistical test
� Significance level: 5% → 48 pass

� Power: 80% → 32 pass

� Probability system is better, given it
passed the test: 40%
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If we reduce the base rate to 4%, the the probability
that the system is better than the baseline, given
that it passed the test, drops to only 40%.



Base Rate Fallacy

� Evaluate 1000 systems
� 1000 similar to baseline

� 0 better than baseline

� Perform statistical test
� Significance level: 5% → 50 pass

� Power: 80% → 0 pass

� Probability system is better, given it
passed the test: 0%
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In the extreme case, a base rate of 0 means that
all passes are just due to random variation. This is
referred to as the “look elsewhere effect” or “look
everywhere effect” – if you keep looking for long
enough, you will find something that appears sig-
nificant.

This is not just a toy problem, but a common prob-
lem in scientific research. For example, see Ioanni-
dis (2005) “Why Most Published Research Findings
are False” https://journals.plos.org/plosmedicine/
article?id=10.1371/journal.pmed.0020124

It’s a problem in data science, particularly when
many variants of a model are tested – unless we
have good reason to believe that some variants
should perform better, the base rate could be very
low.

https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020124
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020124


Effect Size

� A significant difference may not be a
large difference

� e.g. a coin toss
� Coins not perfectly symmetric

� Probability of heads not exactly 50%

� Difference so small we don’t care
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In many cases, we don’t just care about finding a
difference – we want to find a large difference.

For example, if system A performs marginally bet-
ter than system B, but takes a lot longer to run,
or is less interpretable, we might prefer system B
anyway.



Publication Bias

� Hard to publish negative results...

� Authors may hide failed experiments
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Publication bias means that we get a skewed view
of results. Remember that when we make multi-
ple tests, we need to correct for this, e.g. using the
Bonferroni correction. However, if negative results
are not published, we don’t get to see how many
experiments were run.

This becomes more serious when publication bias
leads to authors changing how they try to present
their work.

In your coursework (e.g. Part II project), you don’t
need to get positive results! Try to run your experi-
ments carefully, and report whatever you find.



Summary of Significance Testing

� Significance testing is important but
underused in deep learning

� Choice of test:
� Parametric (e.g. paired Student’s t-test)
� Nonparametric (e.g. sign test)
� Multiple tests (e.g. Bonferroni correction)

� Be careful:
� Base rate fallacy
� Effect size
� Publication bias
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Ethics in Data Science

� Task

� Data

� Model

� Training
Most research

What if this goes wrong?
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Broadly speaking, we can break up any data sci-
ence problem into these four parts.

If the task is poorly defined, or there is a problem
with the data, any model is going to struggle, no
matter how it’s trained.

And if something goes wrong, what happens if we
use the trained system in a real-world application?



Caruana et al. (2015)

� Task: Predict death from pneumonia

� Pattern in data: asthma reduces risk

� Real reason: asthma patients sent to
Intensive Care Unit, reducing risk

� Shallow models (e.g. logistic regression)
→ can identify and fix such problems
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An example from healthcare, to demonstrate the
problem: this example is serious and uncontrover-
sial. Patients with a high risk of death would be
treated in the hospital, while patients with a low
risk would be treated as outpatients. If a high-risk
patient is mistakenly sent home, and then they die,
this is a serious mistake.

Caruana et al. (2015) show how a real pattern
in the data is that having asthma correlates
with lower risk – despite asthma and pneu-
monia both being lung conditions. It turned
out that this was because the asthma patients
were given intensive care, and improved as a
result of that care. Here, there is a bias in the
dataset that we don’t want in the trained model.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.704.9327&rep=rep1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.704.9327&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.704.9327&rep=rep1&type=pdf


Bias

� Bias (statistics):
expected value differs from true value

� Bias (law):
unfair or undesirable prejudice
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There is nothing ethically wrong with statistical bias
– it’s just a technical definition.

However, “bias” in the legal sense (or just the usual
day-to-day sense) is a problem.



Bias

“Bias is a social issue first,
and a technical issue second.”

(Crawford, 2017)
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Kate Crawford (2017) “The Trouble With Bias”, NIPS
Keynote Lecture
https://www.youtube.com/watch?v=ggzWIipKraM

Many machine learning researchers prefer to work
on technical issues, but the social issues are still
there. Social issues are important for any real-world
application.

https://www.youtube.com/watch?v=ggzWIipKraM


Demographic Bias

� Region

� Social Class

� Gender

� Age

� Ethnicity
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This is an important type of social bias to be aware
of: treating different demographic groups differ-
ently and unfairly.



Jørgensen et al. (2015)

� Many NLP tools trained on newspaper
text (e.g. Penn Treebank)

� Test POS-taggers on Twitter data, incl.
African-American Vernacular English:

Group Stanf. Gate Ark

AAVE .614 .791 .775

non-AAVE .745 .833 .779

(significant differences in bold)
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This is an example of demographic bias in NLP,
where NLP tools are trained on the language of a
particular demographic group.

For two of the taggers, the effect size is substantial.

For AAVE, POS-tagging is far from a solved problem!

The Gate and Ark taggers have been adapted for
Twitter, while the Stanford tagger is not (but is often
treated as a standard tool).

http://aclweb.org/anthology/W15-4302

http://aclweb.org/anthology/W15-4302


Decision Making

� The Guardian (2017):
“Computer says no: Irish vet fails oral
English test needed to stay in Australia”

� Bias in training data
vs. bias in decisions
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Guardian article:
https://www.theguardian.com/australia-news/2017/aug/08/

computer-says-no-irish-vet-fails-oral-english-test-needed-

to-stay-in-australia

Follow-up Guardian article:
https://www.theguardian.com/australia-news/2017/aug/10/

outsmarting-the-computer-the-secret-to-passing-australias-

english-proficiency-test

This is a newspaper article, not a research article, so there’s
no comparison between English speakers from different coun-
tries. However, it illustrates the point that machine learning
models are being used in practice, sometimes without care-
fully considering how they might go wrong.

Regardless of whether this particular system fails on Irish ac-
cents, this is a plausible scenario. In a real-world application,
we need to make sure that a bias in the training data (such
as not having any Irish accents) doesn’t result in biased deci-
sions (such as rejecting visas for people with Irish accents).

https://www.theguardian.com/australia-news/2017/aug/08/computer-says-no-irish-vet-fails-oral-english-test-needed-!to-stay-in-australia
https://www.theguardian.com/australia-news/2017/aug/08/computer-says-no-irish-vet-fails-oral-english-test-needed-!to-stay-in-australia
https://www.theguardian.com/australia-news/2017/aug/08/computer-says-no-irish-vet-fails-oral-english-test-needed-!to-stay-in-australia
https://www.theguardian.com/australia-news/2017/aug/10/outsmarting-the-computer-the-secret-to-passing-australias-!english-proficiency-test
https://www.theguardian.com/australia-news/2017/aug/10/outsmarting-the-computer-the-secret-to-passing-australias-!english-proficiency-test
https://www.theguardian.com/australia-news/2017/aug/10/outsmarting-the-computer-the-secret-to-passing-australias-!english-proficiency-test


Privacy

� Collecting and analysing personal data
requires consent

� Personal data must be stored securely

� Anonymising personal data is hard
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A final ethical issue regards personal data. Even if
there is no bias in the data, there are other reasons
to be careful when we work with personal data.



Privacy

� Nouwens et al. (2020): “our empirical
survey of CMPs [cookie banners]
illustrates the extent to which illegal
practices prevail”
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Getting consent needs to be done carefully.

With the GDPR, many websites now have cookie
banners asking for consent. However, many web-
sites aren’t doing this properly!

https://arxiv.org/abs/2001.02479

https://arxiv.org/abs/2001.02479


Privacy

� Narayanan and Shmatikov (2007),
on the Netflix Prize dataset:
“Using the Internet Movie Database
as background knowledge, we
successfully identified known users”

� Four users sued Netflix
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Anonymising personal data needs to be done care-
fully.

Just removing names often isn’t enough. If a person
can be identified based on some part of the data,
the data isn’t anonymous – and then the rest of the
data might reveal sensitive information about that
person.

Narayanan and Shmatikov (2007):
https://arxiv.org/abs/cs/0610105

News article on the lawsuit: https://www.wired.
com/2010/03/netflix-cancels-contest/

https://arxiv.org/abs/cs/0610105
https://www.wired.com/2010/03/netflix-cancels-contest/
https://www.wired.com/2010/03/netflix-cancels-contest/


Summary of Ethics

� Bias in:
� Training data

� Model predictions

� Real-world decisions

� Personal data
� Consent to use of data

� Access to data

33



What We’ve Covered

� Writing code
� Backpropagation

� Software packages

� Statistical Significance
� Student’s t-test, Sign test

� Base rate fallacy, Bonferroni correction

� Ethics
� Bias

� Privacy 34


	Introduction
	Coding
	Backpropagation
	Autograd
	TensorFlow
	Summary

	Statistical Significance Testing
	Ethics
	Bias
	Privacy
	Summary of Ethics

	What We've Covered

