Data Science: Principles and Practice

Lecture 8

Today's Lecture

- Writing code
- Significance testing
- Ethics

Forward pass

Backward pass (calculate gradients with chain rule)

 $\hat{y} = \sigma(w.x)$

$$\hat{y} = \sigma(w.x)$$

 $\mathcal{L} = (\hat{y} - y)^2$

Need to store computation graph

Need to store intermediate values

NumPy with automatic differentiation

from autograd import numpy, scipy, grad

from autograd import numpy, scipy, grad

def forward(x, w):
 return scipy.special.expit(numpy.dot(x, w))

```
def loss_fn(x, y, w):
    return (forward(x, w) - y)**2
```

from autograd import numpy, scipy, grad

def forward(x, w):
 return scipy.special.expit(numpy.dot(x, w))

```
def loss_fn(x, y, w):
    return (forward(x, w) - y)**2
```

calculate_w_grad = grad(loss_fn, 2)

from autograd import numpy, scipy, grad

```
def forward(x, w):
    return scipy.special.expit(numpy.dot(x, w))
```

```
def loss_fn(x, y, w):
    return (forward(x, w) - y)**2
```

```
calculate_w_grad = grad(loss_fn, 2)
```

```
w = numpy.random.standard_normal(size=3)
x = numpy.array([.1,.3,.7])
y = 0
w_grad = calculate_w_grad(x, y, w)
```

- Automatic differentiation
- Compilation for speed
- Range of architectures
- Range of training algorithms

```
import tensorflow as tf
```

```
w = tf.Variable(tf.random.normal((3,)))
def forward(x):
    return tf.math.sigmoid(tf.math.reduce_sum(w * x))
```

```
def loss_fn(x, y):
    return (forward(x) - y)**2
```

```
import tensorflow as tf
```

```
w = tf.Variable(tf.random.normal((3,)))
def forward(x):
    return tf.math.sigmoid(tf.math.reduce_sum(w * x))
```

```
def loss_fn(x, y):
    return (forward(x) - y)**2
```

```
x = tf.constant([.1,.3,.7])
y = tf.constant(0.)
```

```
with tf.GradientTape() as g:
    loss = loss_fn(x, y)
w_grad = g.gradient(loss, w)
```

```
import tensorflow as tf
```

```
w = tf.Variable(tf.random.normal((3,)))
def forward(x):
    return tf.math.sigmoid(tf.math.reduce_sum(w * x))
```

```
def loss_fn(x, y):
    return (forward(x) - y)**2
```

```
x = tf.constant([.1,.3,.7])
y = tf.constant(0.)
```

```
opt = tf.keras.optimizers.SGD()
opt.minimize(lambda: loss_fn(x,y), var_list=[w])
```

Summary

- Backpropagation:
 - Store computation graph
 - Store intermediate values
- Software packages:
 - Automatic backpropagation
 - Automatic compilation
 - Pre-defined architectures
 - Pre-defined training algorithms

Neural Network Research

Emphasis on empirical performance

Neural Network Research

- Emphasis on empirical performance
- Large number of architectures, Large number of hyperparameters
- Datasets re-used many times

Neural Network Research

- Emphasis on empirical performance
- Large number of architectures, Large number of hyperparameters
- Datasets re-used many times
- → Easy to get inflated results

Significance Testing

Dror et al. (2018) survey of NLP papers:

	ACL 2017	TACL 201	
Total papers	196	37	
Experimental papers	180	33	

Significance Testing

Dror et al. (2018) survey of NLP papers:

ACL 2017 TACL 2017

Total papers	196		37	
Experimental papers	180		33	
- reporting significance	63	(35%)	18	(55%)

Significance Testing

Dror et al. (2018) survey of NLP papers:

ACL 2017 TACL 2017

Total papers	196		37	
Experimental papers	180		33	
 reporting significance 	63	(35%)	18	(55%)
 correctly 	36	(20%)	15	(45%)

p-Values

Probability the result would be at least this extreme, under the null hypothesis

p-Values

Probability the result would be at least this extreme, under the null hypothesis

NOT:

Probability the null hypothesis is true

Statistical Significance Testing

- Decide on a **null hypothesis**
- Decide on a **test statistic**
- Decide on a threshold

Statistical Significance Testing

- Decide on a **null hypothesis**
- Decide on a **test statistic**
- Decide on a threshold
- Significance level: probability of incorrectly rejecting null hypothesis (assuming null hypothesis)

Statistical Significance Testing

- Decide on a **null hypothesis**
- Decide on a **test statistic**
- Decide on a threshold
- Significance level: probability of incorrectly rejecting null hypothesis (assuming null hypothesis)
- Power: probability of correctly rejecting null hypothesis (assuming alternative hypothesis)

Parametric Tests

Test statistic follows known distribution (with known parameters)

Parametric Tests

- Test statistic follows known distribution (with known parameters)
- Paired Student's t-test:
 - Paired samples (test datapoints)
 - Scores normally distributed
 - Null hypothesis: same mean

Parametric Tests

- Test statistic follows known distribution (with known parameters)
- Paired Student's t-test:
 - Paired samples (test datapoints)
 - Scores normally distributed
 - Null hypothesis: same mean

• Test statistic:
$$t = \frac{\sqrt{n}}{s_D} \bar{x}_D$$

Parametric Tests

- Test statistic follows known distribution (with known parameters)
- Paired Student's t-test:
 - Paired samples (test datapoints)
 - Scores normally distributed
 - Null hypothesis: same mean

• Test statistic:
$$t = \frac{\sqrt{n}}{s_D} \bar{x}_D$$

 "Student's t-distribution with n-1 degrees of freedom"

No assumptions about distribution

- No assumptions about distribution
- Sign test:
 - Paired samples (test datapoints)
 - System A better or system B better
 - Null hypothesis: equal chance

- No assumptions about distribution
- Sign test:
 - Paired samples (test datapoints)
 - System A better or system B better
 - Null hypothesis: equal chance
 - Test statistic: n

- No assumptions about distribution
- Sign test:
 - Paired samples (test datapoints)
 - System A better or system B better
 - Null hypothesis: equal chance
 - Test statistic: n
 - Binomial distribution

Multiple Tests

If we test many systems, we expect some will pass

Multiple Tests

- If we test many systems, we expect some will pass
- Bonferroni correction:
 - Replace nominal significance level

$$\alpha \mapsto \frac{\alpha}{m}$$

Evaluate 1000 systems

- 900 similar to baseline
- 100 better than baseline

Evaluate 1000 systems

- 900 similar to baseline
- 100 better than baseline
- Perform statistical test
 - Significance level: 5%
 - Power: 80%

- Evaluate 1000 systems
 - 900 similar to baseline
 - 100 better than baseline
- Perform statistical test
 - Significance level: $5\% \rightarrow 45$ pass
 - Power: $80\% \rightarrow 80$ pass

- Evaluate 1000 systems
 - 900 similar to baseline
 - 100 better than baseline
- Perform statistical test
 - Significance level: $5\% \rightarrow 45$ pass
 - Power: $80\% \rightarrow 80$ pass
- Probability system is better, given it passed the test: 64%

- Evaluate 1000 systems
 - 960 similar to baseline
 - 40 better than baseline
- Perform statistical test
 - Significance level: $5\% \rightarrow 48$ pass
 - Power: $80\% \rightarrow 32$ pass
- Probability system is better, given it passed the test: 40%

- Evaluate 1000 systems
 - 1000 similar to baseline
 - 0 better than baseline
- Perform statistical test
 - Significance level: $5\% \rightarrow 50$ pass
 - Power: 80% \rightarrow 0 pass
- Probability system is better, given it passed the test: 0%

A significant difference may not be a large difference

Effect Size

- A significant difference may not be a large difference
- e.g. a coin toss
 - Coins not perfectly symmetric
 - Probability of heads not exactly 50%
 - Difference so small we don't care

Publication Bias

Hard to publish negative results...

Publication Bias

- Hard to publish negative results...
- Authors may hide failed experiments

Summary of Significance Testing

- Significance testing is important but underused in deep learning
- Choice of test:
 - Parametric (e.g. paired Student's t-test)
 - Nonparametric (e.g. sign test)
 - Multiple tests (e.g. Bonferroni correction)
- Be careful:
 - Base rate fallacy
 - Effect size
 - Publication bias

Ethics in Data Science

- Task
- Data
- Model
- Training

Ethics in Data Science

- Task
- Data
- Model
 Training

Ethics in Data Science

Task: Predict death from pneumonia

Caruana et al. (2015)

- Task: Predict death from pneumonia
- Pattern in data: asthma reduces risk

Caruana et al. (2015)

- Task: Predict death from pneumonia
- Pattern in data: asthma reduces risk
- Real reason: asthma patients sent to Intensive Care Unit, reducing risk

Caruana et al. (2015)

- Task: Predict death from pneumonia
- Pattern in data: asthma reduces risk
- Real reason: asthma patients sent to Intensive Care Unit, reducing risk
- Shallow models (e.g. logistic regression)
 → can identify and fix such problems

Bias

- Bias (statistics): expected value differs from true value
- Bias (law): unfair or undesirable prejudice

"Bias is a social issue first, and a technical issue second." (Crawford, 2017)

Demographic Bias

- Region
- Social Class
- Gender
- Age
- Ethnicity

 Many NLP tools trained on newspaper text (e.g. Penn Treebank)

- Many NLP tools trained on newspaper text (e.g. Penn Treebank)
- Test POS-taggers on Twitter data, incl. African-American Vernacular English:

Group	Stanf.	Gate	Ark
AAVE	.614	.791	.775
non-AAVE	.745	.833	.779

(significant differences in bold)

Decision Making

The Guardian (2017): "Computer says no: Irish vet fails oral English test needed to stay in Australia"

Decision Making

- The Guardian (2017): "Computer says no: Irish vet fails oral English test needed to stay in Australia"
- Bias in training data vs. bias in decisions

Collecting and analysing personal data requires consent

Collecting and analysing personal data requires consent

Personal data must be stored securely

- Collecting and analysing personal data requires consent
- Personal data must be stored securely
- Anonymising personal data is hard

Privacy

 Nouwens et al. (2020): "our empirical survey of CMPs [cookie banners] illustrates the extent to which illegal practices prevail"

Privacy

 Narayan and Shmatikov (2007), on the Netflix Prize dataset: "Using the Internet Movie Database as background knowledge, we successfully identified known users"

Privacy

- Narayan and Shmatikov (2007), on the Netflix Prize dataset: "Using the Internet Movie Database as background knowledge, we successfully identified known users"
- Four users sued Netflix

Summary of Ethics

Bias in:

- Training data
- Model predictions
- Real-world decisions
- Personal data
 - Consent to use of data
 - Access to data

What We've Covered

Writing code

- Backpropagation
- Software packages
- Statistical Significance
 - Student's t-test, Sign test
 - Base rate fallacy
- Ethics
 - Social bias
 - Privacy