
Data Science:
Principles and Practice

Lecture 7

Guy Emerson

Today’s Lecture

� Neural networks:
� Architectures

� Training

� Overfitting

1

Disclaimer: any similarity with biological neural
networks is coincidental.

Many data scientists now jump straight for neural
network models. Hopefully, the past 6 lectures will
help to situate neural nets within a wider range of
tools.

Features

input features

engineered

trained

prediction

trained

� Engineering at a more abstract level

2

Many machine learning models can be broken into
two steps: feature extraction, and training. Recall
from the practicals how we manually defined fea-
tures (such as for the housing dataset), and then
trained a classifier.

Features

input features

engineered

trained

prediction

trained

� Engineering at a more abstract level

2

Neural network models train the features as well.
People talk of “end-to-end” training, because all
steps are trained, from the input to the output.

Engineering decisions are pushed to a higher level:
not in terms of individual features, but in terms of
the model architecture.

Feedforward Networks

x 7→ f1(x) 7→ f2(f1(x))

� Linear: f (x) = Ax

� but can simplify matrix multiplication
AB = C

� Nonlinear: f (x) = g(Ax)
(g applied componentwise)

� Can approximate any function

3

A feedforward net applies a sequence of functions to map
from the input to the output.

If the functions are linear, a sequence of functions doesn’t
give us anything – we can express two matrix multiplications
as a single matrix. However, with nonlinear functions, a se-
quence of functions may be more complicated than a single
function. The simplest way to do this is to first use a linear
map, and then apply a nonlinear function to each dimension.

The benefit is that we can approximate a complicated func-
tion using a sequence of simple functions. We can make the
approximation more accurate by having a longer sequence,
or by increasing the dimensionality of the intermdiate repre-
sentation f1(x). (The dimensionalities of the input x and out-
put f2(f1(x)) are fixed by the data.)

In practice, there will usually also be a “bias” term:
f (x) = g(Ax+ b). (In strict mathematical terminology, Ax + b
would be called “affine”, rather than “linear”, but in machine
learning, many authors use the term “linear”.)

Nonlinear Activation Functions

�
1

1+e−x “sigmoid” (cf. logistic regression)

�
1−e−2x

1+e−2x “tanh”

� max{x,0} “rectified linear”

� log(1+ ex) “softplus”

4

−4 −2 0 2 4
0

0.5

1 We came across the sigmoid func-
tion when looking at logistic re-
gression. It is also called the lo-
gistic function.

−4 −2 0 2 4
−1

0

1
The tanh function (pronounced
“tanch”, short for “hyperbolic tan-
gent”), is important mathemati-
cally, but for reasons irrelevant
here. It’s a rescaled sigmoid func-
tion, bounded between -1 and 1,
and shrunk in the x direction.

−4 −2 0 2 4
0

2

4 The rectified linear unit is possibly
the simplest nonlinearity, and fast
to calculate. It isn’t differentiable
at 0, and to avoid this, we can
use the softplus function, which is
smoothed out around 0.

Nonlinear Decision Boundaries

x1

x2

?
?

??
?

◦
◦◦
◦
◦

?

?

?
? ?

◦
◦ ◦◦ ◦

Can be done with a
decision tree

5

We have seen how decision trees allow us to learn
nonlinear decision boundaries.

Nonlinear Decision Boundaries

x1

x2

?
?

??
?

◦
◦◦
◦
◦

?

?

?
? ?

◦
◦ ◦◦ ◦

Rectified linear units:

r(x1 + x2 − 2)
+ r(−x1 − x2 + 2)
− r(x1 − x2)

− r(−x1 + x2)

5

A feedforward net can also learn a nonlinear deci-
sion boundary.

Here, r is the rectified linear function. We linearly
map the input to a 4-dimensional vector, and then
apply r componentwise. We then linearly map this
vector to a single number – if it’s above 0, we
choose ?, and if it’s below 0, we choose ◦.

This is less interpretable than the decision tree, but
neural networks give us a wider class of models.

Feedforward Networks

x h y

Multiple classes: “softmax”
(multiclass logistic regression)

6

We can draw each vector in a neural net as a node
in a graph.

Feedforward Networks

Multiple classes: “softmax”
(multiclass logistic regression)

6

We can also draw individual units (individual dimen-
sions).

In the example from the previous slide, we had two
input units, four hidden units, and one output unit
(to decide between the two classes).

Feedforward Networks

Multiple classes: “softmax”
(multiclass logistic regression)

6

For multiple classes, we can use a softmax layer,
which has one unit for each class. Mathematically,
it’s the same as multiclass logistic regression.

“Deep” Feedforward Networks

x h1 h2 h3 y

a
a

7

A “deep” network is a network with many layers.

The choice of the term “deep” was good for public-
ity. The word has connotations of being “meaning-
ful” or “serious”, and it sounds much more exciting
than “function approximation parametrised by the
composition of a sequence of simple functions”

AlphaGo

8

AlphaGo, a Go-playing program based on deep
learning, has consistently beaten the world’s best
Go players.

It has not been expected that a program could
reach this level of performance – at least, based
on traditional approaches to AI.

Image from: https://deepmind.com/alphago-china

https://deepmind.com/alphago-china

Diagnosis from medical imaging

9

In a more practical setting, deep learning has also
been applied to medical diagnosis.

This image comes from a metastudy, comparing
deep learning models and medical professionals,
tested on the same medical images. Each dot is
one study, and the best performance would be in
the top left corner. We can see that overall, the
deep learning systems are performing about as well
as the professionals.

Liu et al. (2019) “A comparison of deep learning
performance against health-care profession-
als in detecting diseases from medical imag-
ing: a systematic review and meta-analysis”
https://www.thelancet.com/journals/landig/
article/PIIS2589-7500(19)30123-2/fulltext

https://www.thelancet.com/journals/landig/article/PIIS2589-7500(19)30123-2/fulltext
https://www.thelancet.com/journals/landig/article/PIIS2589-7500(19)30123-2/fulltext

Sequence Labelling

article noun verb article noun

Every picture tells a story

t1 t2 t3 t4 t5

h1

w1

h2

w2

h3

w3

h4

w4

h5

w5

10

In part-of-speech tagging, the task is to label each
word in a sentence with the correct part of speech.

Sequence Labelling

article noun verb article noun

Every picture tells a story

t1 t2 t3 t4 t5

h1

w1

h2

w2

h3

w3

h4

w4

h5

w5

10

More generally, “sequence labelling” refers to tasks
where we have one output ti for each token wi.

Convolutional Neural Net

article noun verb article noun

Every picture tells a story

t1 t2 t3 t4 t5

h1

w1

h2

w2

h3

w3

h4

w4

h5

w5

10

In a convolutional neural net (CNN), each hidden
vector (and each output) is a function of a window
of vectors – in this diagram, a window of one token
either side.

The same function is used at each token – e.g.
h2 = f (w1,w2,w3) is the same function as h3 =
f (w2,w3,w4). Applying the same function across
different windows is called a “convolution”.

More precisely, the input vectors are concatenated
– given three vectors w1,w2,w3, each with N dimen-
sions, we can view them together as one vector w3

1
with 3N dimensions. We can then apply a normal
feedforward layer – e.g. h2 = g(Aw3

1 + b), for a ma-
trix A, vector b, and nonlinearity g.

Recurrent Neural Net

article noun verb article noun

Every picture tells a story

t1 t2 t3 t4 t5

h1

w1

h2

w2

h3

w3

h4

w4

h5

w5

10

One limitation of a CNN is that each output is a
function of a limited window of words (on the pre-
vious slide, two words either side). However, for
some tasks, we may need to take into account a
larger context (for example, long-distance syntac-
tic dependencies).

In a recurrent neural network (RNN), we have a hid-
den state which is dependent on the current token
and the previous hidden state. This means that
each prediction is dependent on the current token
and all previous tokens. For example, t5 depends
on all input tokens – in the CNN on the previous
slide, t5 only depended on w3 to w5.

In a “vanilla” RNN, we concatenate wi and hi−1, and
use a normal feedforward layer. The same function
is used at each token.

Training a Network

� Loss function: L(ŷ,y)

� Gradient wrt parameters:
d

dθ

�

L(ŷ,y)
�

� Update: θ← θ − α
d

dθ

�

L(ŷ,y)
�

11

The most common way to train a neural net is us-
ing gradient descent, which we saw in a previous
lecture.

Backpropagation

� Chain rule:
dL
dθ

=
dL
du

du

dθ

� Backprop: efficient chain rule

12

Because a neural net is composed of many lay-
ers, the gradients can be calculated using the chain
rule. An efficient algorithm to apply the chain rule
is backpropagation, which we will see in more detail
next lecture.

Backpropagation

x h1 h2 h3 y

Forward pass

Backward pass
(calculate gradients with chain rule)

13

To train a network, we apply the network forwards
to get its predictions, and then use backpropaga-
tion to get the gradients.

Training Hyperparameters

� Large learning rate:

� Faster training

� Small learning rate:

� More stable training

14

We saw in the practicals how the learning rate is an
important hyperparameter for gradient descent.

We will now look at some more hyperparameters.

Gradient Descent

� Loss per datapoint: L(ŷi,yi)

� Total training loss:
N
∑

i=1

L(ŷi,yi)

� Ideal gradient:
d

dθ

�

N
∑

i=1

L(ŷi,yi)
�

15

Ideally, the gradients would be calculated accord-
ing to the total loss across the whole training set.

However, this is computationally expensive for
large datasets.

Stochastic Gradient Descent

� Ideal gradient:
N
∑

i=1

d

dθ
L(ŷi,yi)

� Stochastic gradient:
d

dθ
L(ŷi,yi)

for i = 1,2,3, . . .

� Minibatch gradient:
j+b
∑

i=j+1

d

dθ
L(ŷi,yi)

for j = 0,b,2b, . . .

16

Rather than waiting until we’ve covered the en-
tire training set before making an update to the
model parameters, stochastic gradient descent
(SGD) makes an update for each datapoint.

The downside of this is that the gradients can vary
substantially from one datapoint to the next.

A middle ground is to make an update for each
“minibatch” of datapoints. The batch size (b above)
is an additional hyperparameter.

Training Hyperparameters

� Small batch size, large learning rate:

� Faster training

� Large batch size, small learning rate:

� More stable training

17

Varying the batch size has a similar effect to vary-
ing the learning rate.

Overfitting

� Neural nets have many parameters

� Easy to overfit

� Some solutions:
� Early stopping

� Regularisation

� Dropout

18

Overfitting is a general problem, not just for neu-
ral nets. However, neural nets can have so many
parameters that it becomes a serious problem.

Early stopping and regularisation are also applica-
ble to non-neural models, but dropout is specific to
neural nets.

Early stopping

Training data

Dev data

L

Epochsoptimal
stopping

point
19

If a model overfits, the loss on the training set will
decrease, but the loss on a held-out test set will
increase.

The number of epochs (number of passes over the
training data) can be treated as an additional hy-
perparameter, to be tuned on a development set.

Benefit: easy to implement.

Drawback: cannot benefit from further computa-
tion time.

Regularisation

� Penalise “bad” parameters:

L = Lerr(ŷi,yi) +Lreg(θ)

� For example:

L1(θ) =
∑

i |θi|

L2(θ) =
∑

i |θi|2

20

Rather than stopping training just before we overfit,
we can try to avoid the model overfitting in the first
place.

Regularisation does this by adding an additional
term to the loss function, which penalises overfit-
ted parameters.

To design a regularisation term, we need to under-
stand what overfitted parameters look like. A sim-
ple approach is to assume that very large values
may be overfitted, since the model may be relying
on these too much. L1 regularisation penalises the
absolute value, and L2 regularisation penalises the
square value.

Using regularisation adds hyperparameters, e.g.
L = Lerr + λ1L1 + λ2L2

Dropout

� Less dependent on specific units

� More robust to noise

21

With dropout, each time we apply the network dur-
ing training, we randomly switch off some units.

The probability of switching off each unit can be
treated as an additional hyperparameter. Using a
probability of 0.5 usually works well.

At test time, we can use the expected activation of
each unit. For example, with a dropout probability
of 0.5, we use all units but with half the activation.

The best way to apply dropout can depend on the
architecture. Further reading: Gal and Ghahramani
(2016) give a Bayesian analysis of dropout and ap-
ply it to RNNs. This is an example of how theory
can take time to catch up with practice.
https://papers.nips.cc/paper/6241-a-theoretically-grounded-

application-of-dropout-in-recurrent-neural-networks

https://papers.nips.cc/paper/6241-a-theoretically-grounded-!application-of-dropout-in-recurrent-neural-networks
https://papers.nips.cc/paper/6241-a-theoretically-grounded-!application-of-dropout-in-recurrent-neural-networks

What we’ve covered

� Neural nets, activation functions

� Architectures: CNNs, RNNs

� Training by gradient descent

� Early stopping, regularisation, dropout

22

	Introduction
	Feedforward Networks
	Sequence Labelling

	Training
	Backpropagation
	Training Hyperparameters

	Overfitting
	What we've covered

