Data Science: Principles and Practice

Lecture 7

Today's Lecture

Neural networks:

- Architectures
- Training
- Overfitting

engineered

engineered trained

trained trained

trained trained

Engineering at a more abstract level

 $x \mapsto f_1(x) \mapsto f_2(f_1(x))$

$$x\mapsto f_1(x)\mapsto f_2(f_1(x))$$

• Linear: f(x) = Ax

$$x\mapsto f_1(x)\mapsto f_2(f_1(x))$$

• Linear:
$$f(x) = Ax$$

but can simplify matrix multiplication
 AB = C

 $x \mapsto f_1(x) \mapsto f_2(f_1(x))$

• Nonlinear: f(x) = g(Ax)

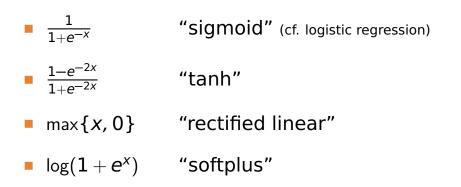
$$x\mapsto f_1(x)\mapsto f_2(f_1(x))$$

Nonlinear: f(x) = g(Ax)
 (g applied componentwise)

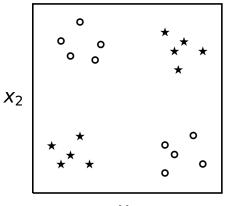
$$x\mapsto f_1(x)\mapsto f_2(f_1(x))$$

- Nonlinear: f(x) = g(Ax)
 (g applied componentwise)
- Can approximate any function

Nonlinear Activation Functions

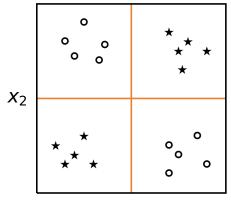


Nonlinear Decision Boundaries



 X_1

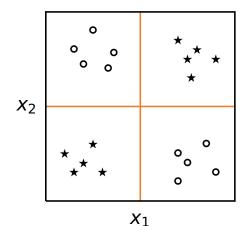
Nonlinear Decision Boundaries



Can be done with a decision tree

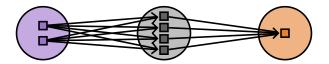
 X_1

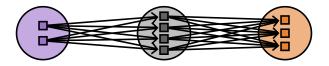
Nonlinear Decision Boundaries



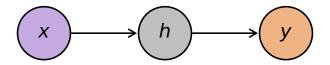
Rectified linear units:

$$r(x_1 + x_2 - 2) + r(-x_1 - x_2 + 2) - r(x_1 - x_2) - r(-x_1 + x_2)$$

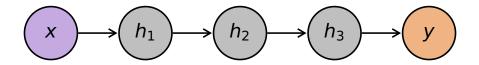




Multiple classes: "softmax" (multiclass logistic regression)

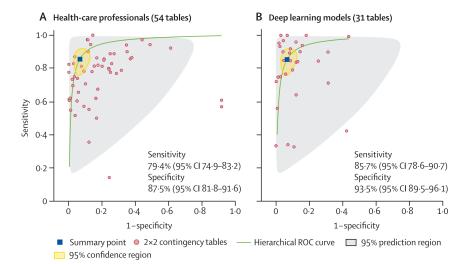


"Deep" Feedforward Networks



AlphaGo

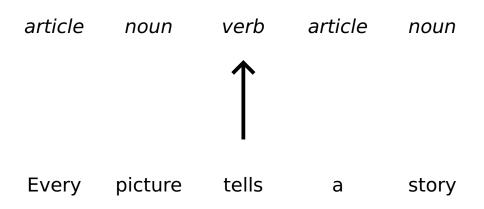
Diagnosis from medical imaging



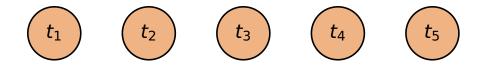
Sequence Labelling

Every picture tells a story

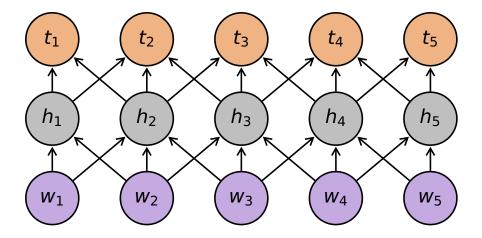
Sequence Labelling



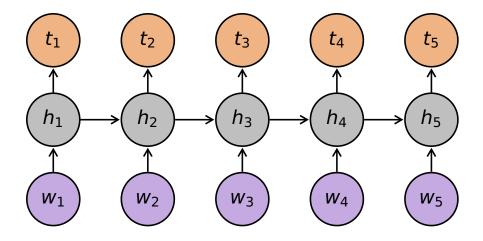
Sequence Labelling



Convolutional Neural Net



Recurrent Neural Net



Training a Network

• Loss function: $\mathcal{L}(\hat{y}, y)$

Training a Network

• Loss function: $\mathcal{L}(\hat{y}, y)$

• Gradient wrt parameters: $\frac{d}{d\theta} (\mathcal{L}(\hat{y}, y))$

Training a Network

• Loss function: $\mathcal{L}(\hat{y}, y)$

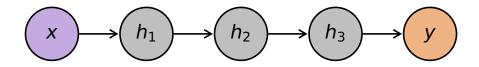
• Gradient wrt parameters: $\frac{d}{d\theta} (\mathcal{L}(\hat{y}, y))$

• Update:
$$\theta \leftarrow \theta - \alpha \frac{d}{d\theta} (\mathcal{L}(\hat{y}, y))$$

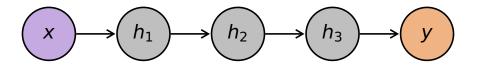
• Chain rule: $\frac{d\mathcal{L}}{d\theta} = \frac{d\mathcal{L}}{du}\frac{du}{d\theta}$

• Chain rule: $\frac{d\mathcal{L}}{d\theta} = \frac{d\mathcal{L}}{du}\frac{du}{d\theta}$

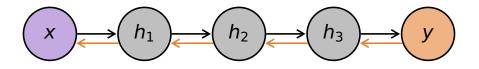
Backprop: efficient chain rule



Forward pass



Forward pass



Backward pass (calculate gradients with chain rule)

Training Hyperparameters

Large learning rate:

Faster training

Small learning rate:

More stable training

Gradient Descent

• Loss per datapoint: $\mathcal{L}(\hat{y}_i, y_i)$

Gradient Descent

- Loss per datapoint: $\mathcal{L}(\hat{y}_i, y_i)$
- Total training loss: $\sum_{i=1}^{N} \mathcal{L}(\hat{y}_i, y_i)$

Gradient Descent

- Loss per datapoint: $\mathcal{L}(\hat{y}_i, y_i)$
- Total training loss: $\sum_{i=1}^{N} \mathcal{L}(\hat{y}_i, y_i)$

• Ideal gradient:
$$\frac{d}{d\theta} \left(\sum_{i=1}^{N} \mathcal{L}(\hat{y}_i, y_i) \right)$$

Stochastic Gradient Descent

Ideal gradient:
$$\sum_{i=1}^{N} \frac{d}{d\theta} \mathcal{L}(\hat{y}_{i}, y_{i})$$
Stochastic gradient:
$$\frac{d}{d\theta} \mathcal{L}(\hat{y}_{i}, y_{i})$$
for *i* = 1, 2, 3, ...

Stochastic Gradient Descent

Training Hyperparameters

- Small batch size, large learning rate:Faster training
- Large batch size, small learning rate:
 - More stable training

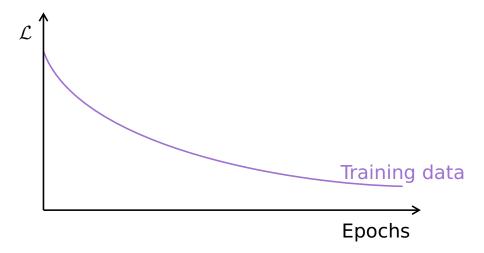
Overfitting

- Neural nets have many parameters
- Easy to overfit

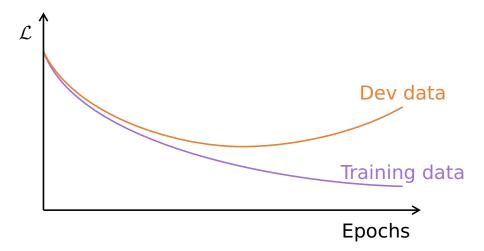
Overfitting

- Neural nets have many parameters
- Easy to overfit
- Some solutions:
 - Early stopping
 - Regularisation
 - Dropout

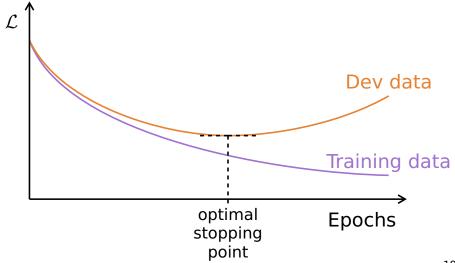
Early stopping



Early stopping



Early stopping



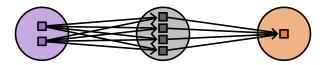
Regularisation

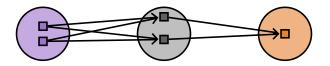
Penalise "bad" parameters: $\mathcal{L} = \mathcal{L}_{err}(\hat{y}_i, y_i) + \mathcal{L}_{reg}(\theta)$

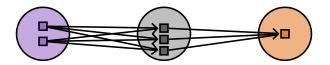
Regularisation

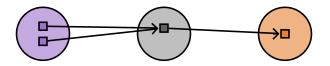
- Penalise "bad" parameters: $\mathcal{L} = \mathcal{L}_{err}(\hat{y}_i, y_i) + \mathcal{L}_{reg}(\theta)$
- For example:

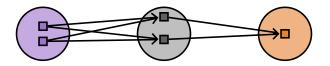
$$\mathcal{L}_1(oldsymbol{ heta}) = \sum_i |oldsymbol{ heta}_i| \ \mathcal{L}_2(oldsymbol{ heta}) = \sum_i |oldsymbol{ heta}_i|^2$$

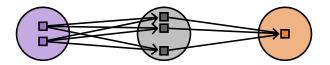


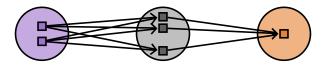












- Less dependent on specific units
- More robust to noise

What we've covered

- Neural nets, activation functions
- Architectures: CNNs, RNNs
- Training by gradient descent
- Early stopping, regularisation, dropout