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Today’s Lecture

� Neural networks:
� Architectures

� Training

� Overfitting
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input features
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� Engineering at a more abstract level
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Feedforward Networks

x 7→ f1(x) 7→ f2(f1(x))

� Linear: f (x) = Ax

� but can simplify matrix multiplication
AB = C
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Nonlinear Activation Functions

�
1

1+e−x “sigmoid” (cf. logistic regression)

�
1−e−2x

1+e−2x “tanh”

� max{x,0} “rectified linear”

� log(1+ ex) “softplus”
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Nonlinear Decision Boundaries
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Can be done with a
decision tree
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Nonlinear Decision Boundaries
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Rectified linear units:

r( x1 + x2 − 2)
+ r(−x1 − x2 + 2)
− r( x1 − x2)

− r(−x1 + x2)
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Feedforward Networks

Multiple classes: “softmax”
(multiclass logistic regression)
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Feedforward Networks

x h y

Multiple classes: “softmax”
(multiclass logistic regression)
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“Deep” Feedforward Networks

x h1 h2 h3 y

a
a
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AlphaGo
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Diagnosis from medical imaging
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Sequence Labelling

article noun verb article noun

Every picture tells a story
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Convolutional Neural Net

article noun verb article noun

Every picture tells a story
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Recurrent Neural Net

article noun verb article noun

Every picture tells a story
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Training a Network

� Loss function: L(ŷ, y)

� Gradient wrt parameters:
d

dθ

�

L(ŷ, y)
�

� Update: θ← θ − α
d

dθ

�

L(ŷ, y)
�
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Backpropagation

� Chain rule:
dL
dθ

=
dL
du

du

dθ

� Backprop: efficient chain rule
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Backpropagation

x h1 h2 h3 y

Forward pass

Backward pass
(calculate gradients with chain rule)
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Training Hyperparameters

� Large learning rate:

� Faster training

� Small learning rate:

� More stable training
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Gradient Descent

� Loss per datapoint: L(ŷi, yi)

� Total training loss:
N
∑

i=1

L(ŷi, yi)

� Ideal gradient:
d

dθ

�

N
∑

i=1

L(ŷi, yi)
�
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� Total training loss:
N
∑

i=1
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Stochastic Gradient Descent

� Ideal gradient:
N
∑

i=1

d

dθ
L(ŷi, yi)

� Stochastic gradient:
d

dθ
L(ŷi, yi)

for i = 1,2,3, . . .

� Minibatch gradient:
j+b
∑

i=j+1

d

dθ
L(ŷi, yi)

for j = 0, b,2b, . . .
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Training Hyperparameters

� Small batch size, large learning rate:

� Faster training

� Large batch size, small learning rate:

� More stable training
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Overfitting

� Neural nets have many parameters

� Easy to overfit

� Some solutions:
� Early stopping

� Regularisation

� Dropout

18



Overfitting

� Neural nets have many parameters

� Easy to overfit

� Some solutions:
� Early stopping

� Regularisation

� Dropout

18



Early stopping

Training data

Dev data

L

Epochs

optimal
stopping

point
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Regularisation

� Penalise “bad” parameters:

L = Lerr(ŷi, yi) +Lreg(θ)

� For example:

L1(θ) =
∑

i |θi|

L2(θ) =
∑

i |θi|2
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Dropout

� Less dependent on specific units

� More robust to noise
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What we’ve covered

� Neural nets, activation functions

� Architectures: CNNs, RNNs

� Training by gradient descent

� Early stopping, regularisation, dropout
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