Today’s Lecture

- Neural networks:
 - Architectures
 - Training
- Overfitting
Features

input \rightarrow features \rightarrow prediction
Features

input → features → prediction

engineered
Features

input ➔ features ➔ prediction

engineered trained
Features

input \rightarrow features \rightarrow prediction

trained \hspace{1cm} trained
Features

input \rightarrow features \rightarrow prediction

- Engineering at a more abstract level
Feedforward Networks

\[x \mapsto f_1(x) \mapsto f_2(f_1(x)) \]
Feedforward Networks

\[x \mapsto f_1(x) \mapsto f_2(f_1(x)) \]

- Linear: \(f(x) = Ax \)
Feedforward Networks

\[x \mapsto f_1(x) \mapsto f_2(f_1(x)) \]

- Linear: \(f(x) = Ax \)

- but can simplify matrix multiplication
 \(AB = C \)
Feedforward Networks

\[x \mapsto f_1(x) \mapsto f_2(f_1(x)) \]

- Nonlinear: \(f(x) = g(Ax) \)
Feedforward Networks

\[x \mapsto f_1(x) \mapsto f_2(f_1(x)) \]

- Nonlinear: \(f(x) = g(Ax) \)
 \((g \text{ applied componentwise})\)
Feedforward Networks

\[x \mapsto f_1(x) \mapsto f_2(f_1(x)) \]

- Nonlinear: \(f(x) = g(Ax) \) (\(g \) applied componentwise)
- Can approximate any function
Nonlinear Activation Functions

- \[\frac{1}{1 + e^{-x}} \] “sigmoid” (cf. logistic regression)
- \[\frac{1 - e^{-2x}}{1 + e^{-2x}} \] “tanh”
- \[\max\{x, 0\} \] “rectified linear”
- \[\log(1 + e^x) \] “softplus”
Nonlinear Decision Boundaries
Nonlinear Decision Boundaries

Can be done with a decision tree
Nonlinear Decision Boundaries

Rectified linear units:

\[
\begin{align*}
&+ r(x_1 + x_2 - 2) \\
&+ r(-x_1 - x_2 + 2) \\
&- r(x_1 - x_2) \\
&- r(-x_1 + x_2)
\end{align*}
\]
Feedforward Networks
Feedforward Networks

Multiple classes: “softmax” (multiclass logistic regression)
Feedforward Networks

\[
x \rightarrow h \rightarrow y
\]
“Deep” Feedforward Networks
AlphaGo

THE ULTIMATE GO CHALLENGE
GAME 3 OF 3
27 MAY 2017

AlphaGo
Winner of Match 3

vs

Ke Jie

RESULT B + Res
Diagnosis from medical imaging

A Health-care professionals (54 tables)

Sensitivity: 79.4% (95% CI 74.9–83.2)
Specificity: 87.5% (95% CI 81.8–91.6)

B Deep learning models (31 tables)

Sensitivity: 85.7% (95% CI 78.6–90.7)
Specificity: 93.5% (95% CI 89.5–96.1)

Legend:
- **Blue square**: Summary point
- **Red circles**: 2x2 contingency tables
- **Green line**: Hierarchical ROC curve
- **Yellow area**: 95% confidence region
- **Light grey area**: 95% prediction region
Sequence Labelling

Every picture tells a story
Sequence Labelling

Every picture tells a story
Sequence Labelling

t_1, t_2, t_3, t_4, t_5

w_1, w_2, w_3, w_4, w_5
Convolutional Neural Net

Every picture tells a story.
Recurrent Neural Net

Every picture tells a story.
Training a Network

- Loss function: $\mathcal{L}(\hat{y}, y)$
Training a Network

- Loss function: $\mathcal{L}(\hat{y}, y)$
- Gradient wrt parameters: \[\frac{d}{d\theta} (\mathcal{L}(\hat{y}, y)) \]
Training a Network

- Loss function: $\mathcal{L}(\hat{y}, y)$

- Gradient wrt parameters: $\frac{d}{d \theta} (\mathcal{L}(\hat{y}, y))$

- Update: $\theta \leftarrow \theta - \alpha \frac{d}{d \theta} (\mathcal{L}(\hat{y}, y))$
Backpropagation

- Chain rule: \(\frac{d\mathcal{L}}{d\theta} = \frac{d\mathcal{L}}{du} \frac{du}{d\theta} \)
Backpropagation

- Chain rule: \(\frac{d\mathcal{L}}{d\theta} = \frac{d\mathcal{L}}{du} \frac{du}{d\theta} \)

- Backprop: efficient chain rule
Backpropagation

Forward pass

Backward pass (calculate gradients with chain rule)
Backpropagation

Forward pass

\[x \rightarrow h_1 \rightarrow h_2 \rightarrow h_3 \rightarrow y \]
Backpropagation

Forward pass

Backward pass
(calculate gradients with chain rule)
Training Hyperparameters

- Large learning rate:
 - Faster training

- Small learning rate:
 - More stable training
Gradient Descent

- Loss per datapoint: $\mathcal{L}(\hat{y}_i, y_i)$
Gradient Descent

- Loss per datapoint: \(\mathcal{L}(\hat{y}_i, y_i) \)

- Total training loss: \(\sum_{i=1}^{N} \mathcal{L}(\hat{y}_i, y_i) \)
Gradient Descent

- Loss per datapoint: \(\mathcal{L}(\hat{y}_i, y_i) \)

- Total training loss: \(\sum_{i=1}^{N} \mathcal{L}(\hat{y}_i, y_i) \)

- Ideal gradient: \(\frac{d}{d\theta} \left(\sum_{i=1}^{N} \mathcal{L}(\hat{y}_i, y_i) \right) \)
Stochastic Gradient Descent

- Ideal gradient: \[\sum_{i=1}^{N} \frac{d}{d\theta} \mathcal{L}(\hat{y}_i, y_i) \]

- Stochastic gradient: \[\frac{d}{d\theta} \mathcal{L}(\hat{y}_i, y_i) \]
 for \(i = 1, 2, 3, \ldots \)
Stochastic Gradient Descent

- Ideal gradient: \[\sum_{i=1}^{N} \frac{d}{d\theta} \mathcal{L}(\hat{y}_i, y_i) \]

- Stochastic gradient: \[\frac{d}{d\theta} \mathcal{L}(\hat{y}_i, y_i) \] for \(i = 1, 2, 3, \ldots \)

- Minibatch gradient: \[\sum_{i=j+1}^{j+b} \frac{d}{d\theta} \mathcal{L}(\hat{y}_i, y_i) \] for \(j = 0, b, 2b, \ldots \)
Training Hyperparameters

- Small batch size, large learning rate:
 - Faster training
- Large batch size, small learning rate:
 - More stable training
Overfitting

- Neural nets have many parameters
- Easy to overfit

Some solutions:
- Early stopping
- Regularisation
- Dropout
Overfitting

- Neural nets have many parameters
- Easy to overfit
- Some solutions:
 - Early stopping
 - Regularisation
 - Dropout
Early stopping

\[L \] vs. Epochs

Training data
Early stopping

Training data

Dev data

\(L \)

Epochs
Early stopping

Training data

Dev data

\mathcal{L}

Epochs

optimal stopping point
Regularisation

- Penalise “bad” parameters:

\[L = L_{\text{err}}(\hat{y}_i, y_i) + L_{\text{reg}}(\theta) \]
Regularisation

- Penalise “bad” parameters:
 \[\mathcal{L} = \mathcal{L}_{\text{err}}(\hat{y}_i, y_i) + \mathcal{L}_{\text{reg}}(\theta) \]

- For example:
 \[\mathcal{L}_1(\theta) = \sum_i |\theta_i| \]
 \[\mathcal{L}_2(\theta) = \sum_i |\theta_i|^2 \]
Dropout

- Less dependent on specific units
- More robust to noise
Dropout

- Less dependent on specific units
- More robust to noise
Dropout

- Less dependent on specific units
- More robust to noise
Dropout

- Less dependent on specific units
- More robust to noise
Dropout

- Less dependent on specific units
- More robust to noise
Dropout

- Less dependent on specific units
- More robust to noise
Dropout

- Less dependent on specific units
- More robust to noise
What we’ve covered

- Neural nets, activation functions
- Architectures: CNNs, RNNs
- Training by gradient descent
- Early stopping, regularisation, dropout