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Today’s Lecture

= Neural networks:
= Architectures

= Training

= Overfitting
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= Engineering at a more abstract level



Feedforward Networks

X — f1(x) — fr(f1(X))
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Feedforward Networks

X — f1(x) — fr(f1(X))

= Linear: f(x) =Ax

= but can simplify matrix multiplication
AB=C



Feedforward Networks

X — f1(x) — fr(f1(X))

= Nonlinear: f(x) = g(Ax)
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Feedforward Networks

X — f1(x) — fr(f1(X))

= Nonlinear: f(x) = g(Ax)
(g applied componentwise)

= Can approximate any function



Nonlinear Activation Functions
N

u Tle—x "sigmoid" (cf. logistic regression)
1—8_2X u ”
= max{x, 0} “rectified linear”

= log(1+ &%) “softplus”



Nonlinear Decision Boundaries




Nonlinear Decision Boundaries

Can be done with a
decision tree



Nonlinear Decision Boundaries

Rectified linear units:

r( xi1+x;—2)
+r(—X1—X2 + 2)
—r( xX1—X2)

— r(—x1 + x2)



Feedforward Networks

SO
“F' =




Feedforward Networks

Multiple classes: “softmax”
(multiclass logistic regression)



Feedforward Networks

O—0—0




“Deep” Feedforward Networks

O-0-0-0-0




AlphaGo

THE ULTIMATE GO CHALLENGE
GAME 3 OF 3

27 MAY 2017

Y AphaGo  Ke Jie

Winner of Match 3

RESULT B+ Res




Diagnosis from medical imaging

A Health-care professionals (54 tables) B Deep learning models (31 tables)
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Sequence Labelling

Every  picture tells a story

10



article

Every

Sequence Labelling

noun verb article

picture tells a

noun

story
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Sequence Labelling
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Convolutional Neural Net
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Training a Network

= Loss function: £(¥, y)
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Training a Network

= Loss function: £(¥, y)

= Gradient wrt parameters: die(ﬁ(f/, y))
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Training a Network

= Loss function: £(y, y)

= Gradient wrt parameters: die(ﬁ(f/, y))

= Update: 6 « G—Gdie (£, y))
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Backpropagation

d. dLdu

= Chain rule: =
de dud6
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Backpropagation

d. dLdu
de dudeé

= Backprop: efficient chain rule

= Chain rule:
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Backpropagation

O-0-0-0-0
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Backpropagation

Forward pass

O-0-0-0-0
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Backpropagation

Forward pass

ONONORON0

Backward pass
(calculate gradients with chain rule)
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Training Hyperparameters

= Large learning rate:
= Faster training

= Small learning rate:
= More stable training
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Gradient Descent

= Loss per datapoint: £(V;, yi)
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Gradient Descent

= Loss per datapoint: £(V;, yi)

N
= Total training loss: Zﬁ(f/i, Yi)
i=1
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Gradient Descent

= Loss per datapoint: £(V;, yi)

N
= Total training loss: ZL()A/,-, Yi)
i=1

d (<L .
Ideal gradient: — L(Yi, Vi
u g d0 (,Zl: (Vi YI))
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Stochastic Gradient Descent

N
= |ldeal gradient: ZC% Vi, ¥i)

i=1
= Stochastic gradient: dieﬁ(f/i,yi)
fori=1,2,3,...
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Stochastic Gradient Descent

da,

N
= |deal gradient: Zde

i=1

yllyl)

= Stochastic gradient: dieﬁ(f/i,yi)
fori=1,2,3,...
AL
= Minibatch gradient: Z —L(Yi, ¥i)
. =j+1 de
forj=0,b,2b,...
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Training Hyperparameters

= Small batch size, large learning rate:
= Faster training

= Large batch size, small learning rate:
= More stable training
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Overfitting

-1
= Neural nets have many parameters

= Easy to overfit
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Overfitting

-1
= Neural nets have many parameters

= Easy to overfit

= Some solutions:
= Early stopping
= Regularisation
= Dropout
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Early stopping

N

Training data

~

Epochs
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Early stopping

N
Dev data

Training data

~

Epochs
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Early stopping

Dev data

Training data

y

stopping
point 1o



Regularisation

= Penalise “bad” parameters:
L= Eerr()/\/i: Yi) + Lreg(6)
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Regularisation
-1

= Penalise “bad” parameters:
L="Ler(Vi,Yi)+ Lreg(6)

= For example:
£1(9) = Z,"eil
L2(6) =25 16il°
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Dropout

21



Dropout
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Dropout

==

= Less dependent on specific units

= More robust to noise
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What we’ve covered

= Neural nets, activation functions
= Architectures: CNNs, RNNs
= Training by gradient descent

= Early stopping, regularisation, dropout
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