
Data Science:
Principles and Practice

Lecture 7

Guy Emerson

Today’s Lecture

� Neural networks:
� Architectures

� Training

� Overfitting

1

Features

input features

engineeredtrained

prediction

trained

� Engineering at a more abstract level

2

Features

input features

engineered

trained

prediction

trained

� Engineering at a more abstract level

2

Features

input features

engineered

trained

prediction

trained

� Engineering at a more abstract level

2

Features

input features

engineered

trained

prediction

trained

� Engineering at a more abstract level

2

Features

input features

engineered

trained

prediction

trained

� Engineering at a more abstract level

2

Feedforward Networks

x 7→ f1(x) 7→ f2(f1(x))

� Linear: f (x) = Ax

� but can simplify matrix multiplication
AB = C

3

Feedforward Networks

x 7→ f1(x) 7→ f2(f1(x))

� Linear: f (x) = Ax

� but can simplify matrix multiplication
AB = C

3

Feedforward Networks

x 7→ f1(x) 7→ f2(f1(x))

� Linear: f (x) = Ax

� but can simplify matrix multiplication
AB = C

3

Feedforward Networks

x 7→ f1(x) 7→ f2(f1(x))

� Nonlinear: f (x) = g(Ax)

(g applied componentwise)

� Can approximate any function

3

Feedforward Networks

x 7→ f1(x) 7→ f2(f1(x))

� Nonlinear: f (x) = g(Ax)
(g applied componentwise)

� Can approximate any function

3

Feedforward Networks

x 7→ f1(x) 7→ f2(f1(x))

� Nonlinear: f (x) = g(Ax)
(g applied componentwise)

� Can approximate any function

3

Nonlinear Activation Functions

�
1

1+e−x “sigmoid” (cf. logistic regression)

�
1−e−2x

1+e−2x “tanh”

� max{x,0} “rectified linear”

� log(1+ ex) “softplus”

4

Nonlinear Decision Boundaries

x1

x2

?
?

??
?

◦
◦◦
◦
◦

?

?

?
? ?

◦
◦ ◦◦ ◦

5

Nonlinear Decision Boundaries

x1

x2

?
?

??
?

◦
◦◦
◦
◦

?

?

?
? ?

◦
◦ ◦◦ ◦

Can be done with a
decision tree

5

Nonlinear Decision Boundaries

x1

x2

?
?

??
?

◦
◦◦
◦
◦

?

?

?
? ?

◦
◦ ◦◦ ◦

Rectified linear units:

r(x1 + x2 − 2)
+ r(−x1 − x2 + 2)
− r(x1 − x2)

− r(−x1 + x2)

5

Feedforward Networks

Multiple classes: “softmax”
(multiclass logistic regression)

6

Feedforward Networks

Multiple classes: “softmax”
(multiclass logistic regression)

6

Feedforward Networks

x h y

Multiple classes: “softmax”
(multiclass logistic regression)

6

“Deep” Feedforward Networks

x h1 h2 h3 y

a
a

7

AlphaGo

8

Diagnosis from medical imaging

9

Sequence Labelling

article noun verb article noun

Every picture tells a story

t1 t2 t3 t4 t5

h1

w1

h2

w2

h3

w3

h4

w4

h5

w5

10

Sequence Labelling

article noun verb article noun

Every picture tells a story

t1 t2 t3 t4 t5

h1

w1

h2

w2

h3

w3

h4

w4

h5

w5

10

Sequence Labelling

article noun verb article noun

Every picture tells a story

t1 t2 t3 t4 t5

h1

w1

h2

w2

h3

w3

h4

w4

h5

w5

10

Convolutional Neural Net

article noun verb article noun

Every picture tells a story

t1 t2 t3 t4 t5

h1

w1

h2

w2

h3

w3

h4

w4

h5

w5

10

Recurrent Neural Net

article noun verb article noun

Every picture tells a story

t1 t2 t3 t4 t5

h1

w1

h2

w2

h3

w3

h4

w4

h5

w5

10

Training a Network

� Loss function: L(ŷ,y)

� Gradient wrt parameters:
d

dθ

�

L(ŷ,y)
�

� Update: θ← θ − α
d

dθ

�

L(ŷ,y)
�

11

Training a Network

� Loss function: L(ŷ,y)

� Gradient wrt parameters:
d

dθ

�

L(ŷ,y)
�

� Update: θ← θ − α
d

dθ

�

L(ŷ,y)
�

11

Training a Network

� Loss function: L(ŷ,y)

� Gradient wrt parameters:
d

dθ

�

L(ŷ,y)
�

� Update: θ← θ − α
d

dθ

�

L(ŷ,y)
�

11

Backpropagation

� Chain rule:
dL
dθ

=
dL
du

du

dθ

� Backprop: efficient chain rule

12

Backpropagation

� Chain rule:
dL
dθ

=
dL
du

du

dθ

� Backprop: efficient chain rule

12

Backpropagation

x h1 h2 h3 y

Forward pass

Backward pass
(calculate gradients with chain rule)

13

Backpropagation

x h1 h2 h3 y

Forward pass

Backward pass
(calculate gradients with chain rule)

13

Backpropagation

x h1 h2 h3 y

Forward pass

Backward pass
(calculate gradients with chain rule)

13

Training Hyperparameters

� Large learning rate:

� Faster training

� Small learning rate:

� More stable training

14

Gradient Descent

� Loss per datapoint: L(ŷi,yi)

� Total training loss:
N
∑

i=1

L(ŷi,yi)

� Ideal gradient:
d

dθ

�

N
∑

i=1

L(ŷi,yi)
�

15

Gradient Descent

� Loss per datapoint: L(ŷi,yi)

� Total training loss:
N
∑

i=1

L(ŷi,yi)

� Ideal gradient:
d

dθ

�

N
∑

i=1

L(ŷi,yi)
�

15

Gradient Descent

� Loss per datapoint: L(ŷi,yi)

� Total training loss:
N
∑

i=1

L(ŷi,yi)

� Ideal gradient:
d

dθ

�

N
∑

i=1

L(ŷi,yi)
�

15

Stochastic Gradient Descent

� Ideal gradient:
N
∑

i=1

d

dθ
L(ŷi,yi)

� Stochastic gradient:
d

dθ
L(ŷi,yi)

for i = 1,2,3, . . .

� Minibatch gradient:
j+b
∑

i=j+1

d

dθ
L(ŷi,yi)

for j = 0,b,2b, . . .

16

Stochastic Gradient Descent

� Ideal gradient:
N
∑

i=1

d

dθ
L(ŷi,yi)

� Stochastic gradient:
d

dθ
L(ŷi,yi)

for i = 1,2,3, . . .

� Minibatch gradient:
j+b
∑

i=j+1

d

dθ
L(ŷi,yi)

for j = 0,b,2b, . . .

16

Training Hyperparameters

� Small batch size, large learning rate:

� Faster training

� Large batch size, small learning rate:

� More stable training

17

Overfitting

� Neural nets have many parameters

� Easy to overfit

� Some solutions:
� Early stopping

� Regularisation

� Dropout

18

Overfitting

� Neural nets have many parameters

� Easy to overfit

� Some solutions:
� Early stopping

� Regularisation

� Dropout

18

Early stopping

Training data

Dev data

L

Epochs

optimal
stopping

point

19

Early stopping

Training data

Dev data

L

Epochs

optimal
stopping

point

19

Early stopping

Training data

Dev data

L

Epochsoptimal
stopping

point
19

Regularisation

� Penalise “bad” parameters:

L = Lerr(ŷi,yi) +Lreg(θ)

� For example:

L1(θ) =
∑

i |θi|

L2(θ) =
∑

i |θi|2

20

Regularisation

� Penalise “bad” parameters:

L = Lerr(ŷi,yi) +Lreg(θ)

� For example:

L1(θ) =
∑

i |θi|

L2(θ) =
∑

i |θi|2

20

Dropout

� Less dependent on specific units

� More robust to noise

21

Dropout

� Less dependent on specific units

� More robust to noise

21

Dropout

� Less dependent on specific units

� More robust to noise

21

Dropout

� Less dependent on specific units

� More robust to noise

21

Dropout

� Less dependent on specific units

� More robust to noise

21

Dropout

� Less dependent on specific units

� More robust to noise

21

Dropout

� Less dependent on specific units

� More robust to noise

21

What we’ve covered

� Neural nets, activation functions

� Architectures: CNNs, RNNs

� Training by gradient descent

� Early stopping, regularisation, dropout

22

	Introduction
	Feedforward Networks
	Sequence Labelling

	Training
	Backpropagation
	Training Hyperparameters

	Overfitting
	Summary

