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Recap: Supervised Learning

Dataset: {< x (1), y (1) >,< x (2), y (2) >, ..., < x (m), y (m) >}

Input features: (x
(i)
1 , x

(i)
2 , ..., x

(i)
n )

Known (desired) outputs: y (1), y (2), ..., y (m)

Our goal: Learn the mapping f : X → Y
such that y (i) = f (x (i)) for all i = 1, 2, ...,m

Strategy: Learn the function on the training set,
use to predict ŷ (j) = f (x (j)) for all xj in the test set

Last time we looked into regression tasks, today – classification
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Recap: Regression vs. Classification

Regression tasks: the desired labels are continuous
Examples: House size, age, income → price

Weather conditions, time → number of rented bikes

Classification tasks: the desired labels are discrete
Examples: Pixel distribution in the image → digit label

Word distribution in movie reviews → sentiment
(pos/neg/neut) label
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Outline
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2 Data transformations
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Binary classification

Case study

Let’s start with a simpler case – binary classification
Task: Sentiment analysis in movie reviews (Part IA CST Machine
Learning and Real-world Data)
Data: m × n matrix X with m reviews and n features (words)
Labels: y ∈ (0, 1) with 0 for neg and 1 for pos

Approach

Naive Bayes classifier:

relies on probabilistic assumptions about the data

makes “naive” independence assumption about the features

fast and scalable compared to more sophisticated methods

competitive results on a number of real-world tasks, despite
over-simplistic assumptions
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Binary classification with Naive Bayes

Prediction

ŷ (i) = argmaxc∈(0,1)p(y = c |x (i)) =

{
1, if p(y = 1|x (i)) > p(y = 0|x (i))

0, otherwise

where x (i) = (f
(i)
1 , ..., f

(i)
n )

Flipping the conditions

p̂(y = c |x (i)) = p(c)p(x(i)|c)
p(x(i))

where p(c) is the prior, p(x (i)|c) is likelihood, p(x (i)) is evidence (note: it’s
irrelevant for the argmax estimation), and p(y = c |x (i)) is the posterior
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Binary classification with Naive Bayes

“Naive” independence assumption

p(f
(i)
1 , ..., f

(i)
n |y) ≈

∏n
k=1 p(f

(i)
k |y)

Revised estimation

ŷ (i) = argmaxyp(y |x (i)) = argmaxyp(y)
∏n

k=1 p(f
(i)
k |y)

where probabilities can be estimated from the training data using
maximum a posteriori estimate

Naive Bayes models typically differ with respect to the assumptions
about the distribution of features p(x (i)|y). Commonly used models:
Gaussian NB, Multinomial NB, Bernoulli NB.a

aRecommended reading: A. McCallum and K. Nigam (1998). A comparison of
event models for Naive Bayes text classification.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1529
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Linearly separable data

Example

Linear ML models, or the models that try to build a linear separation
boundary between the classes, are well-suited for such data. Examples:
Logistic Regression, Perceptron, Support Vector Machines
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Logistic Regression

Logistic Regression vs Linear Regression

Last time we looked into Linear Regression and learned how to use it to
output a continuous value

Despite the name, Logistic Regression outputs a discrete value, i.e. it is
used for classification

Logistic Regression estimates whether the probability of an instance i
belonging to class c is greater than 0.5. If it is, the item is classified a c ;
otherwise as ¬c
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Logistic Regression

Estimate w · X as before, where w is the weight vector (w0,w1, ...,wn)

Apply a sigmoid function to the result: p̂ = σ(w · X ), where
σ(t) = 1

1+exp(−t)

Prediction step:

ŷ =

{
1, if p̂ ≥ 0.5

0, otherwise
or: ŷ =

{
1, if t ≥ 0

0, otherwise
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Logistic Regression

Training

Learning objective: learn weights w such that prediction p̂ has a high
positive value for y = 1 and high negative value for y = 0

The following cost function answers this objective:

c(w) =

{
−log(p̂), if y = 1

−log(1− p̂), if y = 0

Log-loss cost function:
J(w) = − 1

m

∑m
i=1[y (i)log(p̂(i)) + (1− y (i))log(1− p̂(i))]

No closed form solution for w that minimises the cost function, but since
the function is convex, Gradient Descent (refer to the previous lecture) can
be used to find the optimal weights
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Single-layer perceptron

ŷ (i) =

{
1, if w · x (i) + b > 0

0, otherwise

where w · x (i) is the dot product of
weight vector w and the feature vector

x (i) for the instance i ,
∑n

j=1 wjx
(i)
j ,

and b is the bias term
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Single-layer perceptron

Training

1 Initialisation: Initialise the weights w = (w1, ...,wj) and the bias
b = w0 to some value (e.g., 0 or some other small value)

2 Estimation at time t for each instance i :
ŷ (i) = f (w(t) · x (i)) = f (w0(t) + w1(t)x

(i)
1 + ...+ wn(t)x

(i)
n )

3 Update for the weights at time (t + 1) for instance i and each

feature 0 ≤ j ≤ n: wj(t + 1) = wj(t) + r(y (i) − ŷ (i))x
(i)
j , where r is a

predefined learning rate

4 Stopping criteria: convergence to an error below a predefined
threshold γ, or after a predefined number of iterations t ≤ T .
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Single-layer perceptron

If the data is linearly separable, the perceptron algorithm is
guaranteed to converge

If the data is not linearly separable, the perceptron will never be able
to find a solution to separate the classes in the training data

A single layer perceptron is a simple linear classifier. Often used to
illustrate the simplest feedforward neural network. Multilayer
perceptrons combine multiple layers and use non-linear activation
functions, which makes them capable to classify data that is not
linearly separable (more on this in later lectures)
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Non-linearly separable data

The classic example: XOR problem

E. Kochmar DSPNP: Lecture 3 13 November 15 / 25



Non-linearly separable data

Data transformations for non-linearly separable data

Actual (raw) data: two classes non-linearly separable (on the left)

Objective: transform the data using additional dimensions such that
it becomes possible to separate the classes linearly (on the right)

Method: data transformations / feature maps that transform the
data into higher dimensional space (e.g., kernel trick)
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Non-linearly separable data

Toy example

Suppose a non-linearly separable classes as above: e.g., instances
x (0) = (0.5, 0.5) and x (1) = (−1,−1)

Consider using a square function: x (0) → x ′(0) = (0.25, 0.25) and
x (1) → x ′(1) = (1, 1)

With the new data representation, the instances of class 0 (blue) end
up on the left, and the instances of class 1 (red) end up on the right

Kernel trick and feature maps allow us to cast the original data into a
higher dimensional data: e.g. (x , y)→ (x2, xy , y2)
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Performance measures

Accuracy

Task: suppose you select a digit in the
handwritten digits dataset (e.g., 5), and
perform a binary classification task of detecting
5 vs. ¬5 in a balanced dataset of 10 digits

Evaluation: the most straightforward way to
evaluate is to calculate the proportion of
correct predictions:
ACC = num(ŷ==y)

num(ŷ==y)+num(ŷ !=y)

Results: suppose that you get an accuracy of
91%. Is this a good accuracy score?
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Performance measures

What accuracy score is missing

If the classifier always predicts ¬5 (i.e., does nothing), the accuracy
will be ACC = 90%

It’s unclear what exactly the classifier gets wrong

Confusion matrix

predicted ¬5 predicted 5

actual ¬5 TN FP
actual 5 FN TP

True negatives (TN) – actual instances of ¬5 correctly classified as ¬5

False negatives (FN) – actual instances of 5 missed by the classifier

True positives (TP) – actual instances of 5 correctly classified as 5

False positives (FP) – actual instances of ¬5 misclassified as 5
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Performance measures

Measures

Accuracy: ACC = TP+TN
TP+TN+FP+FN

Precision: P = TP
TP+FP

Recall: R = TP
TP+FN

F1-score: F1 = 2× P×R
P+R [Fβ = (1 + β2)× P×R

β2×P+R ]

Precision-recall trade-off
Some tasks require higher recall and some higher precision, e.g.:

Detection of a potentially cancerous case that needs further tests?

Detection of suspicious activity on a credit card? Automated blocking?

Automated change of drug dosage for a hospital patient?

Automated spell/grammar checker correction?

Search for related web-pages online?
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Performance measures

Confidence threshold

Precision-recall curve
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Performance measures

Receiver Operating Characteristic (ROC)

Specificity = TN
TN+FP

False positive rate (FPR) / fall-out / probability of false alarm
= (1− specificity)

True positive rate (TPR) / sensitivity / probability of detection = recall
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Multi-class classification

From binary to multi-class

Directly classified with some algorithms: e.g., Naive Bayes – simply output
the most probable class

Linear classifiers: one of two strategies:

1 one-vs-all (OvA) / one-vs-rest (OvR): n binary classifiers trained to
detect one class each (e.g. 10 binary digit detectors); output the class
with the highest score

2 one-vs-one (OvO): N(N−1)
2 binary class-vs-class classifiers (e.g. 45

binary digit-vs-digit classifiers); output class that wins most
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Multi-class classification

Error analysis

Confusion matrix: Confusions heatmap:
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Practical 2: Classification

Your task

two datasets: iris flower dataset (150 samples, 3 classes, 4 features),
and hand-written digits dataset (≈ 1.8K samples, 10 classes, 64
features)

learn about binary and multi-class classification in practice

investigate whether data is linearly separable and what to do when it
is not

apply 3 classifiers discussed in this lecture

focus on evaluation of the classifiers

one dataset is used to illustrate the ML techniques; your task is to
implement all the above steps for the other one
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