Recap: Supervised Learning

Dataset: \{ <x^{(1)}, y^{(1)}>, <x^{(2)}, y^{(2)}>, ..., <x^{(m)}, y^{(m)}> \}

Input features: \((x^{(i)}_1, x^{(i)}_2, ..., x^{(i)}_n) \)

Known (desired) outputs: \(y^{(1)}, y^{(2)}, ..., y^{(m)} \)

Our goal: Learn the mapping \(f : X \rightarrow Y \) such that \(y^{(i)} = f(x^{(i)}) \) for all \(i = 1, 2, ..., m \)

Strategy: Learn the function on the training set, use to predict \(\hat{y}^{(j)} = f(x^{(j)}) \) for all \(x_j \) in the test set

Last time we looked into regression tasks, today – classification
Recap: Regression vs. Classification

Regression tasks: the desired labels are continuous
Examples: House size, age, income \rightarrow price
 Weather conditions, time \rightarrow number of rented bikes

Classification tasks: the desired labels are discrete
Examples: Pixel distribution in the image \rightarrow digit label
 Word distribution in movie reviews \rightarrow sentiment (pos/neg/neut) label
Outline

1. Binary classification
2. Data transformations
3. Model evaluation
4. Multi-class classification
5. Practical 2
Binary classification

Case study
Let’s start with a simpler case – binary classification

Task: Sentiment analysis in movie reviews (Part IA CST Machine Learning and Real-world Data)

Data: $m \times n$ matrix X with m reviews and n features (words)

Labels: $y \in (0, 1)$ with 0 for *neg* and 1 for *pos*

Approach

Naive Bayes classifier:
- relies on probabilistic assumptions about the data
- makes “naive” independence assumption about the features
- fast and scalable compared to more sophisticated methods
- competitive results on a number of real-world tasks, despite over-simplistic assumptions
Binary classification with Naive Bayes

Prediction

\[\hat{y}^{(i)} = \text{argmax}_{c \in (0,1)} p(y = c|x^{(i)}) = \begin{cases} 1, & \text{if } p(y = 1|x^{(i)}) > p(y = 0|x^{(i)}) \\ 0, & \text{otherwise} \end{cases} \]

where \(x^{(i)} = (f_1^{(i)}, \ldots, f_n^{(i)}) \)

Flipping the conditions

\[\hat{p}(y = c|x^{(i)}) = \frac{p(c)p(x^{(i)}|c)}{p(x^{(i)})} \]

where \(p(c) \) is the prior, \(p(x^{(i)}|c) \) is likelihood, \(p(x^{(i)}) \) is evidence (note: it’s irrelevant for the \(\text{argmax} \) estimation), and \(p(y = c|x^{(i)}) \) is the posterior.
Binary classification with Naive Bayes

“Naive” independence assumption

\[p(f_1^{(i)}, \ldots, f_n^{(i)} | y) \approx \prod_{k=1}^{n} p(f_k^{(i)} | y) \]

Revised estimation

\[\hat{y}^{(i)} = \text{argmax}_y p(y | x^{(i)}) = \text{argmax}_y p(y) \prod_{k=1}^{n} p(f_k^{(i)} | y) \]

where probabilities can be estimated from the training data using maximum a posteriori estimate

Naive Bayes models typically differ with respect to the assumptions about the distribution of features \(p(x^{(i)} | y) \). Commonly used models: Gaussian NB, Multinomial NB, Bernoulli NB.\(^a\)

Linearly separable data

Example

Linear ML models, or the models that try to build a linear separation boundary between the classes, are well-suited for such data. Examples: Logistic Regression, Perceptron, Support Vector Machines.
Logistic Regression

Logistic Regression vs Linear Regression

- Last time we looked into Linear Regression and learned how to use it to output a continuous value.
- Despite the name, Logistic Regression outputs a discrete value, i.e. it is used for classification.
- Logistic Regression estimates whether the probability of an instance i belonging to class c is greater than 0.5. If it is, the item is classified as c; otherwise as $\neg c$.
Logistic Regression

- Estimate $w \cdot X$ as before, where w is the weight vector $(w_0, w_1, ..., w_n)$
- Apply a *sigmoid* function to the result: $\hat{p} = \sigma(w \cdot X)$, where
 \[
 \sigma(t) = \frac{1}{1 + \exp(-t)}
 \]
- Prediction step:
 \[
 \hat{y} = \begin{cases}
 1, & \text{if } \hat{p} \geq 0.5 \\
 0, & \text{otherwise}
 \end{cases}
 \]
 or: $\hat{y} = \begin{cases}
 1, & \text{if } t \geq 0 \\
 0, & \text{otherwise}
 \end{cases}$
Logistic Regression

Training

- Learning objective: learn weights w such that prediction \hat{p} has a high positive value for $y = 1$ and high negative value for $y = 0$

- The following cost function answers this objective:
 \[
 c(w) = \begin{cases}
 -\log(\hat{p}), & \text{if } y = 1 \\
 -\log(1 - \hat{p}), & \text{if } y = 0
 \end{cases}
 \]

- Log-loss cost function:
 \[
 J(w) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log(\hat{p}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{p}^{(i)})]
 \]

- No closed form solution for w that minimises the cost function, but since the function is convex, Gradient Descent (refer to the previous lecture) can be used to find the optimal weights
Single-layer perceptron

\[
\hat{y}(i) = \begin{cases}
1, & \text{if } w \cdot x^{(i)} + b > 0 \\
0, & \text{otherwise}
\end{cases}
\]

where \(w \cdot x^{(i)} \) is the dot product of weight vector \(w \) and the feature vector \(x^{(i)} \) for the instance \(i \), \(\sum_{j=1}^{n} w_j x_j^{(i)} \), and \(b \) is the bias term.
Single-layer perceptron

Training

1. **Initialisation**: Initialise the weights $w = (w_1, \ldots, w_j)$ and the bias $b = w_0$ to some value (e.g., 0 or some other small value).

2. **Estimation** at time t for each instance i:
 \[
 \hat{y}^{(i)} = f(w(t) \cdot x^{(i)}) = f(w_0(t) + w_1(t)x_1^{(i)} + \ldots + w_n(t)x_n^{(i)})
 \]

3. **Update** for the weights at time $(t + 1)$ for instance i and each feature $0 \leq j \leq n$:
 \[
 w_j(t + 1) = w_j(t) + r(y^{(i)} - \hat{y}^{(i)})x_j^{(i)}
 \]
 where r is a predefined learning rate.

4. **Stopping criteria**: convergence to an error below a predefined threshold γ, or after a predefined number of iterations $t \leq T$.
Single-layer perceptron

- If the data is linearly separable, the perceptron algorithm is guaranteed to converge.
- If the data is not linearly separable, the perceptron will never be able to find a solution to separate the classes in the training data.
- A single layer perceptron is a simple linear classifier. Often used to illustrate the simplest feedforward neural network. Multilayer perceptrons combine multiple layers and use non-linear activation functions, which makes them capable to classify data that is not linearly separable (more on this in later lectures).
Non-linearly separable data

The classic example: XOR problem

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$Y = X_1 \oplus X_2$
Non-linearly separable data

Data transformations for non-linearly separable data

- **Actual (raw) data**: two classes non-linearly separable (on the left)
- **Objective**: transform the data using additional dimensions such that it becomes possible to separate the classes linearly (on the right)
- **Method**: data transformations / feature maps that transform the data into higher dimensional space (e.g., *kernel trick*)
Toy example

- Suppose a non-linearly separable classes as above: e.g., instances $x^{(0)} = (0.5, 0.5)$ and $x^{(1)} = (-1, -1)$
- Consider using a square function: $x^{(0)} \rightarrow x'^{(0)} = (0.25, 0.25)$ and $x^{(1)} \rightarrow x'^{(1)} = (1, 1)$
- With the new data representation, the instances of class 0 (blue) end up on the left, and the instances of class 1 (red) end up on the right
- **Kernel trick** and feature maps allow us to cast the original data into a higher dimensional data: e.g. $(x, y) \rightarrow (x^2, xy, y^2)$
Performance measures

Accuracy

- **Task**: suppose you select a digit in the handwritten digits dataset (e.g., 5), and perform a binary classification task of detecting 5 vs. \(\neg\,5\) in a balanced dataset of 10 digits.

- **Evaluation**: the most straightforward way to evaluate is to calculate the proportion of correct predictions:

 \[
 ACC = \frac{\text{num}(\hat{y}==y)}{\text{num}(\hat{y}==y) + \text{num}(\hat{y}!=y)}
 \]

- **Results**: suppose that you get an accuracy of 91%. Is this a good accuracy score?
Performance measures

What accuracy score is missing

- If the classifier always predicts $\neg 5$ (i.e., does nothing), the accuracy will be $ACC = 90\%$
- It’s unclear what exactly the classifier gets wrong

Confusion matrix

<table>
<thead>
<tr>
<th></th>
<th>predicted $\neg 5$</th>
<th>predicted 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual $\neg 5$</td>
<td>TN</td>
<td>FP</td>
</tr>
<tr>
<td>actual 5</td>
<td>FN</td>
<td>TP</td>
</tr>
</tbody>
</table>

- **True negatives** (TN) – actual instances of $\neg 5$ correctly classified as $\neg 5$
- **False negatives** (FN) – actual instances of 5 missed by the classifier
- **True positives** (TP) – actual instances of 5 correctly classified as 5
- **False positives** (FP) – actual instances of $\neg 5$ misclassified as 5
Performance measures

 Measures

- **Accuracy:** \(ACC = \frac{TP + TN}{TP + TN + FP + FN} \)
- **Precision:** \(P = \frac{TP}{TP + FP} \)
- **Recall:** \(R = \frac{TP}{TP + FN} \)
- **F\(_1\)-score:** \(F_1 = 2 \times \frac{P \times R}{P + R} \) \([F_\beta = (1 + \beta^2) \times \frac{P \times R}{\beta^2 \times P + R}] \)

Precision-recall trade-off

Some tasks require higher recall and some higher precision, e.g.:

- Detection of a potentially cancerous case that needs further tests?
- Detection of suspicious activity on a credit card? Automated blocking?
- Automated change of drug dosage for a hospital patient?
- Automated spell/grammar checker correction?
- Search for related web-pages online?
Performance measures

Confidence threshold

- Precision: 6/8 = 75%
- Recall: 6/6 = 100%
- 4/5 = 80%
- 4/6 = 67%
- 3/3 = 100%
- 3/6 = 50%

Precision-recall curve

![Precision-Recall Curve](image)
Performance measures

Receiver Operating Characteristic (ROC)

- **Specificity** = \(\frac{TN}{TN + FP} \)
- **False positive rate (FPR) / fall-out / probability of false alarm**
 \[= (1 - \text{specificity}) \]
- **True positive rate (TPR) / sensitivity / probability of detection = recall**
Multi-class classification

From binary to multi-class

- Directly classified with some algorithms: e.g., Naive Bayes – simply output the most probable class
- Linear classifiers: one of two strategies:
 1. *one-vs-all (OvA) / one-vs-rest (OvR):* n binary classifiers trained to detect one class each (e.g. 10 binary digit detectors); output the class with the highest score
 2. *one-vs-one (OvO):* $\frac{N(N-1)}{2}$ binary class-vs-class classifiers (e.g. 45 binary digit-vs-digit classifiers); output class that wins most
Multi-class classification

Error analysis

Confusion matrix:

```
array([[36,  0,  0,  0,  0,  0,  0,  0,  0,  0],
       [ 0, 36,  0,  0,  0,  0,  0,  0,  0,  0],
       [ 0,  1, 34,  0,  0,  0,  0,  0,  0,  0],
       [ 0,  0,  1, 34,  0,  2,  0,  0,  0,  0],
       [ 0,  0,  0,  0, 35,  0,  0,  0,  0,  1],
       [ 0,  0,  0,  0,  0, 37,  0,  0,  0,  0],
       [ 0,  0,  0,  0,  0,  0, 36,  0,  0,  0],
       [ 0,  0,  0,  0,  0,  0,  0, 36,  0,  0],
       [ 0,  4,  0,  2,  2,  1,  0,  1, 23,  2],
       [ 1,  0,  0,  0,  0,  0,  0,  1,  0, 34]])
```
Practical 2: Classification

Your task

- two datasets: iris flower dataset (150 samples, 3 classes, 4 features), and hand-written digits dataset (≈ 1.8K samples, 10 classes, 64 features)
- learn about binary and multi-class classification in practice
- investigate whether data is linearly separable and what to do when it is not
- apply 3 classifiers discussed in this lecture
- focus on evaluation of the classifiers
- one dataset is used to illustrate the ML techniques; your task is to implement all the above steps for the other one