Practical 4

Foundations of Data Science—DJW-—2019,/2020

These questions are not intended for supervision (unless your supervisor directs you otherwise).

Practical 4 can be found on Azure Notebooks, prac4.ipynb. In it, you will implement a particle filter
for estimating the location of a moving object, given noisy readings. The following questions illustrate
how the computation works, but in a simpler setting where it’s possible to write out exact formulae. I
recommend you answer these questions first, before embarking on the practical.

Consider the following code. It computes a sequence of = values, exactly the same as in example
sheet 4 question 3, and this sequence is a Markov chain. But we don’t observe = directly, we only see
noisy observations x + e. This is called a hidden Markov model.

def hmm():
MAX_STATE = 9
# Pick the initial state uniformly from
X = numpy.random.randint(low=0, high=MAX_STATE+1)
while True:
e = numpy.random.choice([-1,0,1])
yield min(MAX_STATE, max(@, x + e))
d = numpy.random.choice([-1,0,1], p=[1/4,1/2,1/4])
X = min(MAX_STATE, max(@, x + d))
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Question 1. Let X = (Xp,Xy,...) be the sequence of z values computed inside this code, and let
Y = (Yo, Y1,...) be the observations, where Y, is X, plus noise. Draw the state space diagram for X.
Draw a causal diagram for { Xy, Yy, X1,Y7, Xo,... }.

Question 2. Define 71':&0) and 5:(¢0) by

59(00) =P(Xy=2)=1ho forze€{0,...,9}
ﬂio) =PXo=2|Yy=y).

(Since wg(co) depends on yy we ought to write it as a function of x and yg, but for the sake of conciseness

we won’t write out the yo dependency.) Use Bayes’s rule to find a formula for Wio) in terms of 6(%) and

the matrix Qg =P(Y,, =y | X, = ).

Question 3. Let 64" = P(X; =2 | Yy = yo). Use the law of total probability to find a formula for stH
in terms of 7(°) and the transition matrix Py = P(Xpq1 = o' | X, = ).

Question 4. Let
6 =P(Xp =2|Yo=Yo,--- . Yno1 = Y1)
) =P(Xp = | Yo =40, Va1 = Yn—1,Yn = Un)
(a)  Show that
oy _ 05" Quy

Ty,

(b)  Write pseudocode for a function that takes as input a list of readings y = [yo, y1, - - - , ¥n] and outputs
the vector 7(™). Your pseudocode should include defining the P and @ matrices.

and 53(6") = Z ﬂ'infl)sz.

(¢) If your code is given the input y = [3,3,4,9], it should fail with a divide-by-zero error. Give an
interpretation of this failure.



Solutions

Question 1. From lecture notes section 9.1,
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Question 2. Using Bayes’s rule,

70 =P(Xy =2 | Yy =y) = const x P(Xy = 2)P(Yy =y | Xo = x) = const x 6 Quy,

x

where the constant is whatever makes ZT WJ(CO) =1, thus
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Question 3.

oM =P(X) =2 | Yy = o)
= ZIP’(Xl =z |Xo=20,Yo=yo)P(Xo =20 | Yo =yo) by law tot. prob.

Zo

= Z}P’(Xl =z|Xo=x0)P(Xo=20]| Yo =y0) from causal diagram
zo
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Question 4. The two equations come from the same reasoning as above. For the code,

# Emission matrix.
# Q[x,y] = Prob(reading is y | true position is x)
Q = np.zeros((10,10))
for x in range(10):
Q[x, max(x-1,0)] += 1/3
Q[x, x] += 1/3
Q[x, min(x+1,9)] += 1/3
assert all(np.sum(Q, axis=1) == 1)

# Transition matrix
# P[x,y] = Prob(next position is y | current position is x)
P = np.zeros((10,10))
for x in range(10):
P[x, max(x-1,0)] += 1/4
P[x,x] += 1/2
P[x, min(x+1,9)] += 1/4
assert all(np.sum(P, axis=1) == 1)

60 = np.ones(10) / 10 # initial distribution, uniform on {0,1,...,9}

def filter_obs(60, ys, P, Q):
6 = 60
for y in ys:
m=Q[:, y] *

n=m/ sum(m)
S=mn@P
return m



Here is the result of a simulation. The plot shows the simulated values of X, labelled ‘ground truth’,
the simulated observations Y, labelled ‘noisy obs’, and the 7(") vector at each timestep, indicated by
shading.
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When the code is run on inputs [3, 4,4, 9] it fails because the denominator is 0 when normalizing 7@,
Concretely, it’s impossible to see observation Y3 = 4 (which implies X5 € {3,4,5}) followed by Y, = 9
(which implies X4 € {8,9}). So, when we use Bayes’s rule to derive 7(*), we’re conditioning on an event
with probability 0, and so Bayes’s rule doesn’t apply.



