
Practical 4
Foundations of Data Science—DJW—2019/2020

These questions are not intended for supervision (unless your supervisor directs you otherwise).

Practical 4 can be found on Azure Notebooks, prac4.ipynb. In it, you will implement a particle filter
for estimating the location of a moving object, given noisy readings. The following questions illustrate
how the computation works, but in a simpler setting where it’s possible to write out exact formulae. I
recommend you answer these questions first, before embarking on the practical.

Consider the following code. It computes a sequence of x values, exactly the same as in example
sheet 4 question 3, and this sequence is a Markov chain. But we don’t observe x directly, we only see
noisy observations x+ e. This is called a hidden Markov model.

1 def hmm():
2 MAX_STATE = 9
3 # Pick the initial state uniformly from
4 x = numpy.random.randint(low=0, high=MAX_STATE+1)
5 while True:
6 e = numpy.random.choice([−1,0,1])
7 yield min(MAX_STATE, max(0, x + e))
8 d = numpy.random.choice([−1,0,1], p=[1/4,1/2,1/4])
9 x = min(MAX_STATE, max(0, x + d))

Question 1. Let X = (X0, X1, . . . ) be the sequence of x values computed inside this code, and let
Y = (Y0, Y1, . . . ) be the observations, where Yn is Xn plus noise. Draw the state space diagram for X.
Draw a causal diagram for {X0, Y0, X1, Y1, X2, . . . }.

Question 2. Define π
(0)
x and δ

(0)
x by

δ(0)x = P(X0 = x) = 1/10 for x ∈ {0, . . . , 9}
π(0)
x = P(X0 = x | Y0 = y).

(Since π
(0)
x depends on y0 we ought to write it as a function of x and y0, but for the sake of conciseness

we won’t write out the y0 dependency.) Use Bayes’s rule to find a formula for π
(0)
x in terms of δ(0) and

the matrix Qxy = P(Yn = y |Xn = x).

Question 3. Let δ
(1)
x = P(X1 = x | Y0 = y0). Use the law of total probability to find a formula for δ

(1)
x

in terms of π(0) and the transition matrix Pxx′ = P(Xn+1 = x′ |Xn = x).

Question 4. Let

δ(n)x = P(Xn = x | Y0 = y0, . . . , Yn−1 = yn−1)

π(n)
x = P(Xn = x | Y0 = y0, . . . , Yn−1 = yn−1, Yn = yn)

(a) Show that

π(n)
x =

δ
(n)
x Qxy∑
z δ

(n)
z Qzy

and δ(n)x =
∑
z

π(n−1)
z Pzx.

(b) Write pseudocode for a function that takes as input a list of readings y = [y0, y1, . . . , yn] and outputs
the vector π(n). Your pseudocode should include defining the P and Q matrices.

(c) If your code is given the input y = [3, 3, 4, 9], it should fail with a divide-by-zero error. Give an
interpretation of this failure.
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Solutions
Question 1. From lecture notes section 9.1,

X0 X1 X2 · · ·

Y0 Y1 Y2

Question 2. Using Bayes’s rule,

π(0)
x = P(X0 = x | Y0 = y) = const × P(X0 = x)P(Y0 = y |X0 = x) = const × δ(0)x Qxy0

where the constant is whatever makes
∑

x π
(0)
x = 1, thus

π(0)
x =

δ
(0)
x Qxy0∑

x′ δ
(0)
x′ Qx′y0

Question 3.

δ(1)x = P(X1 = x | Y0 = y0)

=
∑
x0

P(X1 = x |X0 = x0, Y0 = y0)P(X0 = x0 | Y0 = y0) by law tot. prob.

=
∑
x0

P(X1 = x |X0 = x0)P(X0 = x0 | Y0 = y0) from causal diagram

=
∑
x0

π(0)
x0

Px0x.

Question 4. The two equations come from the same reasoning as above. For the code,

# Emission matrix.
# Q[x,y] = Prob(reading is y | true position is x)
Q = np.zeros((10,10))
for x in range(10):

Q[x, max(x‐1,0)] += 1/3
Q[x, x] += 1/3
Q[x, min(x+1,9)] += 1/3

assert all(np.sum(Q, axis=1) == 1)

# Transition matrix
# P[x,y] = Prob(next position is y | current position is x)
P = np.zeros((10,10))
for x in range(10):

P[x, max(x‐1,0)] += 1/4
P[x,x] += 1/2
P[x, min(x+1,9)] += 1/4

assert all(np.sum(P, axis=1) == 1)

δ0 = np.ones(10) / 10 # initial distribution, uniform on {0,1,...,9}

def filter_obs(δ0, ys, P, Q):
δ = δ0
for y in ys:

π = Q[:, y] * δ
π = π / sum(π)
δ = π @ P

return π
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Here is the result of a simulation. The plot shows the simulated values of Xn labelled ‘ground truth’,
the simulated observations Yn labelled ‘noisy obs’, and the π(n) vector at each timestep, indicated by
shading.
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When the code is run on inputs [3, 4, 4, 9] it fails because the denominator is 0 when normalizing π(4).
Concretely, it’s impossible to see observation Y3 = 4 (which implies X3 ∈ {3, 4, 5}) followed by Y4 = 9
(which implies X4 ∈ {8, 9}). So, when we use Bayes’s rule to derive π(4), we’re conditioning on an event
with probability 0, and so Bayes’s rule doesn’t apply.
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