These questions are not intended for supervision (unless your supervisor directs you otherwise).

Practical 4 can be found on Azure Notebooks, prac4.ipynb. In it, you will implement a particle filter for estimating the location of a moving object, given noisy readings. The following questions illustrate how the computation works, but in a simpler setting where it’s possible to write out exact formulae. I recommend you answer these questions first, before embarking on the practical.

Consider the following code. It computes a sequence of \(x \) values, exactly the same as in example sheet 4 question 3, and this sequence is a Markov chain. But we don’t observe \(x \) directly, we only see noisy observations \(x + e \). This is called a hidden Markov model.

```python
def hmm():
    MAX_STATE = 9

    # Pick the initial state uniformly from
    x = numpy.random.randint(low=0, high=MAX_STATE+1)

    while True:
        e = numpy.random.choice([-1,0,1])
        yield min(MAX_STATE, max(0, x + e))
        d = numpy.random.choice([-1,0,1], p=[1/4,1/2,1/4])
        x = min(MAX_STATE, max(0, x + d))
```

Question 1. Let \(X = (X_0, X_1, \ldots) \) be the sequence of \(x \) values computed inside this code, and let \(Y = (Y_0, Y_1, \ldots) \) be the observations, where \(Y_n \) is \(X_n \) plus noise. Draw the state space diagram for \(X \). Draw a causal diagram for \(\{X_0, Y_0, X_1, Y_1, X_2, \ldots\} \).

Question 2. Define \(\pi^{(0)}_x \) and \(\delta^{(0)}_x \) by

\[
\begin{align*}
\delta^{(0)}_x &= \Pr(X_0 = x) = \frac{1}{10} \quad \text{for } x \in \{0, \ldots, 9\} \\
\pi^{(0)}_x &= \Pr(X_0 = x \mid Y_0 = y).
\end{align*}
\]

(Since \(\pi^{(0)}_x \) depends on \(y_0 \) we ought to write it as a function of \(x \) and \(y_0 \), but for the sake of conciseness we won’t write out the \(y_0 \) dependency.) Use Bayes’s rule to find a formula for \(\pi^{(0)}_x \) in terms of \(\delta^{(0)}_x \) and the matrix \(Q_{xy} = \Pr(Y_n = y \mid X_n = x) \).

Question 3. Let \(\delta^{(1)}_x = \Pr(X_1 = x \mid Y_0 = y_0) \). Use the law of total probability to find a formula for \(\delta^{(1)}_x \) in terms of \(\pi^{(0)}_x \) and the transition matrix \(P_{xx'} = \Pr(X_{n+1} = x' \mid X_n = x) \).

Question 4. Let

\[
\begin{align*}
\delta^{(n)}_x &= \Pr(X_n = x \mid Y_0 = y_0, \ldots, Y_{n-1} = y_{n-1}) \\
\pi^{(n)}_x &= \Pr(X_n = x \mid Y_0 = y_0, \ldots, Y_{n-1} = y_{n-1}, Y_n = y_n)
\end{align*}
\]

(a) Show that

\[
\pi^{(n)}_x = \frac{\delta^{(n)}_x Q_{xy}}{\sum_z \delta^{(n)}_z Q_{zy}} \quad \text{and} \quad \delta^{(n)}_x = \sum_z \pi^{(n-1)}_z P_{zx}.
\]

(b) Write pseudocode for a function that takes as input a list of readings \(y = [y_0, y_1, \ldots, y_n] \) and outputs the vector \(\pi^{(n)} \). Your pseudocode should include defining the \(P \) and \(Q \) matrices.

(c) If your code is given the input \(y = [3, 3, 4, 9] \), it should fail with a divide-by-zero error. Give an interpretation of this failure.
Solutions

Question 1. From lecture notes section 9.1,

\[X_0 \rightarrow X_1 \rightarrow X_2 \rightarrow \cdots \]

\[Y_0 \quad Y_1 \quad Y_2 \]

Question 2. Using Bayes’s rule,

\[\pi_x^{(0)} = \mathbb{P}(X_0 = x | Y_0 = y) = \text{const} \times \mathbb{P}(X_0 = x) \mathbb{P}(Y_0 = y | X_0 = x) = \text{const} \times \delta_x^{(0)} Q_{xy_0} \]

where the constant is whatever makes \(\sum_x \pi_x^{(0)} = 1 \), thus

\[\pi_x^{(0)} = \frac{\delta_x^{(0)} Q_{xy_0}}{\sum_x \delta_x^{(0)} Q_{xy_0}} \]

Question 3.

\[\delta_x^{(1)} = \mathbb{P}(X_1 = x | Y_0 = y_0) \]

\[= \sum_{x_0} \mathbb{P}(X_1 = x | X_0 = x_0, Y_0 = y_0) \mathbb{P}(X_0 = x_0 | Y_0 = y_0) \text{ by law tot. prob.} \]

\[= \sum_{x_0} \mathbb{P}(X_1 = x | X_0 = x_0) \mathbb{P}(X_0 = x_0 | Y_0 = y_0) \text{ from causal diagram} \]

\[= \sum_{x_0} \pi_x^{(0)} P_{x_0 x}. \]

Question 4. The two equations come from the same reasoning as above. For the code,

```python
# Emission matrix.
# Q[x, y] = Prob(reading is y | true position is x)
Q = np.zeros((10, 10))
for x in range(10):
    Q[x, max(x-1, 0)] += 1/3
    Q[x, x] += 1/3
    Q[x, min(x+1, 9)] += 1/3
assert all(np.sum(Q, axis=1) == 1)

# Transition matrix
# P[x, y] = Prob(next position is y | current position is x)
P = np.zeros((10, 10))
for x in range(10):
    P[x, max(x-1, 0)] += 1/4
    P[x, x] += 1/2
    P[x, min(x+1, 9)] += 1/4
assert all(np.sum(P, axis=1) == 1)

δ0 = np.ones(10) / 10  # initial distribution, uniform on {0, 1, ..., 9}

def filter_obs(δ0, ys, P, Q):
    δ = δ0
    for y in ys:
        π = Q[:, y] * δ
        π = π / sum(π)
        δ = π @ P
    return π
```
Here is the result of a simulation. The plot shows the simulated values of X_n labelled ‘ground truth’, the simulated observations Y_n labelled ‘noisy obs’, and the $\pi^{(n)}$ vector at each timestep, indicated by shading.

When the code is run on inputs $[3, 4, 4, 9]$ it fails because the denominator is 0 when normalizing $\pi^{(4)}$. Concretely, it’s impossible to see observation $Y_3 = 4$ (which implies $X_3 \in \{3, 4, 5\}$) followed by $Y_4 = 9$ (which implies $X_4 \in \{8, 9\}$). So, when we use Bayes’s rule to derive $\pi^{(4)}$, we’re conditioning on an event with probability 0, and so Bayes’s rule doesn’t apply.