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7. Frequentism I: model readouts
According to the frequentist school of inference, when we analyse a dataset we should consider the
‘counterfactual multiverse’ of all the possible ways the dataset might have turned out but didn’t.

To be more concrete, let x be the dataset we observe, and let X be a random variable repre-
senting all the ways that the dataset might have turned out. Imagine an infinite collection of parallel
universes20, each with its own dataset drawn from distribution X . Perhaps we computed a maximum
likelihood estimate using the dataset we have—then in each parallel universe there will be a parallel
data scientist who has computed their own estimate, and who is to say that ours is better than theirs?
If all the estimates end up very close to each other then we should be confident in the result, and if
there’s a wide spread then we should not be confident.

The data scientist doesn’t just see the data sitting in the database. Like Dr Strange from Marvel
Comics, they see 14,000,605 ways that things might have turned out. Not very useful if you’re tallying
up your bank account for the past month and working out whether you’re overdrawn. Very useful if
you’re making forecasts or inferences.

The difficulty, of course, is that we’re stuck inside our own universe and we can’t actually see
the outcomes in all the parallel universes. As frequentists, we therefore need tools that allow us to use
of the data we have available in our universe, in order to reason about the multiverse. Dr Strange really
could see the true distribution of X , but the humble frequentist has to find work-arounds to simulate
it.

20The word ‘frequentism’ comes from interpreting P(X = x) as the frequency of outcome x across all these parallel
universes.
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7.1. Confidence intervals / resampling
Let’s suppose we want to report some quantity h(x) that we’ve computed from the dataset x.

This might be the maximum likelihood estimator for the unknown parameter. Or perhaps our
probability model has multiple unknown parameters, and h(x) is the estimator for just one of them.
Or perhaps h(x) isn’t even based on maximum likelihood estimators at all, perhaps it’s just some
arbitrary data summary. (The technical term for all of these cases—for any quantity that’s a function
of the observed data and doesn’t involve unknown parameters—is statistic.)

Instead of reporting just the value of h computed on the dataset we observed, we should do
our best to simulate the parallel universe datasets, and report the spread of values of h. Here are two
common approaches for synthesizing such a dataset by leveraging the data we actually have. They’re
both known as resampling.

You’re writing up a news story about knife crime. You write “A 95% confidence for the
mean number of attacks is [51, 120]”. Your colleagues look at you as if you’re crazy. One
of them, a self-styled data wizard, runs an database query SELECT AVG(num_attacks)
FROM offences WHERE offence=”knife” and gets the answer 85, and wonders why you
can’t give a straight answer to a straight question.

Let our dataset x consist of observations (x1, x2, . . . , xn). Here are two ways to generate a
random resampled dataset X∗.

• Non‐parametric resampling. Let X∗ consist of n items chosen with replacement from
(x1, . . . , xn). In other words, X∗ is a sample of size n drawn from the empirical distribu-
tion of the dataset. (As discussed in section 4.2, the best-fitting distribution for a dataset
is the dataset itself, i.e. the empirical distribution.)

• Parametric resampling. Suppose we have a probability model Pr(xi |θ) for the data, where
θ is an unknown parameter, and the observations represent independent samples. First, fit
the model i.e. find the maximum likelihood estimator θ̂ from the data we have. Now, we
generate a synthetic dataset X∗ by sampling n items, generated randomly from our fitted
model.

We should generate a large number of synthetic datasets, and compute h on each, and report the
spread of values we see.

empirical distribution,
section 4.2 There’s no universal rule for the best way to simulate the multiverse. How could there be—

how could we deduce what might have happened when all we know is what actually happened? You
should think about where the data came from, and how it was collected.

A standard way to express the spread of values of h(X∗) is as a 95% confidence interval, i.e.
an interval [lo, hi] such that

P
(
h(X∗) ∈ [lo, hi]

)
= 0.95.

A common choice is a two-sided interval, where

P
(
h(X∗) < lo

)
= 0.025 and P

(
h(X∗) > hi

)
= 0.025.

There’s a handy library routine to find these bounds computationally: if we’ve sampled a list of values
h_sample from h(X∗), then all we need is

lo,hi = numpy.quantile(h_sample, [0.025, 0.975])

Other choices for the confidence interval are just as legitimate: for example if our statistic h(x) is
always ≥ 0 and we hope it’s small, then we might report a one-sided interval [0, hi] with hi chosen so
that P(h(X∗) > hi) = 0.05.
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Example 7.1 (Parametric resampling).
We are given a dataset 7.2, 7.3, 7.8, 8.2, 8.8, 9.5which we believe is drawn from the Normal(µ, σ2)
distribution, whereµ and σ are unknown. The maximum likelihood estimator µ̂ is just the sample
mean, 8.13 in this case. Find a 95% confidence interval for µ̂.

Write the dataset as x1, . . . , xn. We found formulae for the maximum likelihood estimators µ̂ and σ̂
in section 1.5 page 15:

µ̂ =
1

n

n∑
i=1

xi , σ̂ =

√√√√ 1

n

n∑
i=1

(xi − µ̂)2 .

We can synthesize a new dataset X∗ by simply calling a Normal(µ̂, σ̂2) random number generator n
times, and then compute µ̂(X∗). Now, repeat this to get 10,000 samples of µ̂(X∗).

1 x = [7.2 , 7.3 , 7.8 , 8.2 , 8.8 , 9.5]
2 def µ̂(x ) : return numpy.mean(x)
3 def σ̂(x ) : return numpy. sqrt (numpy.mean(numpy.power(x − µ̂(x) , 2)))
4 def rx_star () : return numpy.random.normal( s ize=len (x) , loc=µ̂(x) , scale=σ̂(x))
5 µ̂_sample = [ µ̂( rx_star ()) for _ in range(10000)]

We can plot a histogram of µ̂(X∗), or report a confidence inverval.

6 lo , hi = numpy. quantile (µ̂_sample, [.025 , .975]) # [7.48, 8.79]

7 plt . h ist (µ̂_sample, bins=30, alpha=.4)
8 plt . axvline ( lo , l i nes ty l e=’dotted ’ , color=’0.4 ’ )
9 plt . axvline (hi , l i nes ty l e=’dotted ’ , color=’0.4 ’ )
10 plt . axvline (µ̂(x) , l ines ty l e=’dashed ’ , color=’black ’ )
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Example 7.2 (Non‐parametric resampling).
We are given a dataset 7.2, 7.3, 7.8, 8.2, 8.8, 9.5 and we computed the sample mean x̄ = 8.13.
Find a 95% confidence interval.

Remember, x̄ is a number, not a random variable, so it doesn’t really have a confidence
interval. The same is true of µ̂(x) in the previous exercise: it’s a number, not a random variable.
What the question is asking is: if we were to collect a new dataset, and compute a new sample
mean, what’s a range in which this new value is likely to fall?

To sample n items with replacement from a list x, use numpy.random.choice(x, size=n).
sampling commands:
section 1.3.1 page 8

1 x = [7.2 , 7.3 , 7.8 , 8.2 , 8.8 , 9.5]
2 def rx_star () : return numpy.random. choice(x , s ize=len (x))
3 xbar_sample = [numpy.mean(rx_star ()) for _ in range(10000)]
4 lo , hi = numpy. quantile (xbar_sample , [.025 , .975]) # [7.52, 8.80]
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0
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500
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Example 7.3 (Parametric resampling).
I toss n = 10 coins and get x = 6 heads. Using the probability model X ∼ Binom(n, p) where
X is the number of heads, and n = 10 and p is unknown, I estimate that the probability of heads
is p̂ = x/n = 0.6.

Find a 95% confidence interval for p̂.

Write the maximum likelihood estimator as p̂(x), to emphasize that it’s a statistic computed from the
data x. We can synthesize a new outcome X∗ by generating a Binom

(
n, p̂(x)

)
random variable.

1 x ,n = (6,10)
2 p̂ = x/n
3 def rx_star () : return numpy.random. binomial(n=n, p=p̂)
4 p̂_sample = [ rx_star()/n for _ in range(10000)]
5 lo , hi = numpy. quantile (p̂_sample, [.025 , .975]) # (0.3, 0.9)

6

7 p, c = numpy. unique(numpy. array(p̂_sample) , return_counts=True)
8 plt . bar(p, c , width=0.07, alpha=.4)
9 plt . axvline ( lo , l i nes ty l e=’dotted ’ , color=’0.4 ’ )
10 plt . axvline (hi , l i nes ty l e=’dotted ’ , color=’0.4 ’ )
11 plt . axvline (p̂ , l i nes ty l e=’dashed ’ , color=’black ’ )
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Example 7.4 (Non‐parametric resampling).
I toss n = 10 coins and get x = 6 heads. I estimate that the probability of heads is x/n = 0.6.
Find a 95% confidence interval for this.

Non-parametric resampling means “pick a value at random from the empirical distribution”. All
we’re given in this question is a single observation x = 6, so the empirical distribution is too simple—
every time we resample from it we get the same answer, X∗ = 6. But there’s a better way to look at
the observed data: look at it not as a count, but as a full-length dataset with 10 records describing
the outcomes of 10 coin tosses.

t H H H t t H t H H

To resample a single coin toss, we pick one of these 10 outcomes at random, and get heads with
probability 6/10. To resample n coin tosses, we pick n of these at random, with replacement. The
number of heads from n resampled coin tosses is Binom(n, 6/10), which is in fact exactly the same
answer we got from parametric resampling in example 7.3.
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7.2. Measuring differences
Here’s typical setting in which we want to measure our confidence in an estimate. Suppose we have
two systems, A and B, and we’ve measured outcomes under both systems, and we want to know
which leads to better outcomes. For example, A and B might be different placing of an ad and we’re
measuring the number of click-throughs; or they might be different compilers and we’re measuring
compilation time; or they might be placebo and drug and we’re measuring the drug’s effect size. How
do we estimate the difference between the two? More importantly, if the choice between A and B has
financial or ethical implications: how confident can we be in our estimate?

Estimating differences is in fact just another application of the tools from the previous section,
namely confidence intervals and resampling. Here are two general approaches (though they are just
illustrations, and many variations are possible). Suppose we have a dataset x = (x1, . . . , xm) from
system A, and y = (y1, . . . , yn) from system B.

• Non‐parametric resampling. First decide on a metric for the difference, for example the mean
difference δ(x, y) = x̄− ȳ. Then create a synthetic dataset X∗ by resampling from the x values,
and another synthetic dataset Y ∗ by resampling from the y values, and compute δ(X∗, Y ∗).
Repeat this many times, and report the spread of values.

• Parametric resampling. Formulate a probability model to describe both datasets simultaneously.
The model should have some parameters that differ between the two datasets, though it may
also have parameters that are shared. Decide on a metric for the difference, which should be a
function of the parameters. For example, our model might have parameters µA and µB for the
two datasets, and the metric might be δ = |µA − µB |.

Fit the model, i.e. find the maximum likelihood estimators for all unknown parameters. Use
the fitted model to synthesize new datasets X∗ and Y ∗, compute the maximum likelihood esti-
mators for these datasets, and thence compute the metric of interest21. Repeat this many times,
and report the spread of values.

Example 7.5 (Parametric resampling).
We are given a dataset x = (7.2, 7.3, 7.8, 8.2, 8.8, 9.5) which we believe is drawn from the
Normal(µ, σ2) distribution, and y = (8.3, 8.5, 9.2) which we believe is drawn from Normal(µ+
δ, σ2). Find the maximum likelihood estimator for δ, and a 95% confidence interval.

Let’s use parametric resampling. The first step is to find maximum likelihood estimators for all the
unknown parameters.

When we write out the likelihood, the rule is that we include all the data and all the unknown
parameters. In this question, “all the data” means “all the xi and all the yi”, and the unknown
parameters are µ, δ, and σ. So the likelihood function is

lik(µ, δ, σ | x1, . . . , xm, y1, . . . , yn)

= Pr(x1, . . . , xm, y1, . . . , yn | µ, δ, σ)
= PrX(x1 | µ, σ)× · · · × PrX(xm | µ, σ)× PrY (y1 | µ, δ, σ)× · · · × PrY (yn | µ, δ, σ)

where X ∼ Normal(µ, σ2) and Y ∼ Normal(µ+ δ, σ2),

and assuming all observations are independent

=

( m∏
i=1

1√
2πσ2

e−(xi−µ)2/2σ2

)( n∏
i=1

1√
2πσ2

e−(yi−µ−δ)2/2σ2

)
.

Taking logarithms, to make the algebra easier,

log lik(µ, δ, σ) = −m+ n

2
log(2πσ2)− 1

2σ2

{ m∑
i=1

(xi − µ)2 + (yi − µ− δ)2
}
.

To find the maximum likelihood estimators, we need to solve three simultaneous equations:
∂

∂µ
log lik = 0,

∂

∂δ
log lik = 0,

∂

∂σ
log lik = 0.

21By the plug-in principle, page 2, the maximum likelihood estimator for a derived quantity δ = f(µA, µB) is just the func-
tion applied to the maximum likelihood estimators, δ̂ = f(µ̂A, µ̂B). Therefore, in parametric resampling, we’re resampling
the maximum likelihood estimator for the metric of interest, δ̂.
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Solving the first two we get µ̂ = x̄ = and δ̂ = ȳ− x̄, where x̄ denotes the sample mean
∑

i xi/m and
ȳ =

∑
i yi/n. Solving the third equation gives

σ̂ =

√√√√ 1

m+ n

{ m∑
i=1

(xi − µ̂)2 +

n∑
i=1

(yi − µ̂− δ̂)2
}
.

(You may spot that this is a special case of linear regression. We could have skipped all this algebra
and gone straight for the computational solution: create a vector xy by concatenating x and y, create
a vector sys consisting of m copies of ”A” followed by n of ”B”, then fit the linear model xy ≈
µ+δ1sys=”B”. See section 2.2.1 for one-hot coding, and section 2.4 for the link between linear models
and Gaussian probability models.)

1 x = numpy. array ([7.2 , 7.3 , 7.8 , 8.2 , 8.8 , 9.5])
2 y = numpy. array ([8.3 , 8.5 , 9.2])
3 m ,n = len(x) , len (y)
4 µ̂ = numpy.mean(x)
5 δ̂ = numpy.mean(y) − numpy.mean(x)
6 σ̂ = numpy. sqrt (numpy.sum((x − µ̂)∗∗2) + numpy.sum((y − µ̂ − δ̂)∗∗2)/(m+n))

The second step is to use resampling to synthesize new datasets X∗ and Y ∗, and thence new values
for δ̂(X∗, Y ∗):

7 def rxy_star () :
8 return (numpy.random.normal( loc=µ̂ , scale=σ̂ , s ize=m) ,
9 numpy.random.normal( loc=µ̂+δ̂ , scale=σ̂ , s ize=n))
10 def δ̂_star () :
11 x_star , y_star = rxy_star ()
12 return numpy.mean(y_star) − numpy.mean(x_star)
13 δ̂_sample = [ δ̂_star() for _ in range(10000)]

Now we can report the spread of values of δ̂(X∗, Y ∗), for example by showing a histogram and a 95%
confidence interval.

14 lo , hi = numpy. quantile (δ̂_sample, [.025 , .975])
15 plt . h ist (deltahat_sample , bins=30, alpha=.4)
16 plt . axvline ( lo , l i nes ty l e=’dotted ’ , color=’0.4 ’ )
17 plt . axvline (hi , l i nes ty l e=’dotted ’ , color=’0.4 ’ )
18 plt . axvline (δ̂ , l i nes ty l e=’dashed ’ , color=’black ’ )
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Exercise 7.6 (Parametric resampling, indirect).
For the data in exercise 7.5, suppose that the x values are drawn from Normal(µx, σ

2) and the y
values are drawn from Normal(µy, σ

2). Estimate the difference δ = µy − µx, and report a 95%
confidence interval.

Using similar maths to the previous exercise, the maximum likelihood estimators are

µ̂x = x̄, µ̂y = ȳ, σ̂ =

√√√√ 1

m+ n

{ m∑
i=1

(xi − µ̂x)2 +

n∑
i=1

(yi − µ̂y)2
}
.

After a little thought, we realize that the resampling code we have to write here is nearly identical to
the resampling code we wrote for the previous exercise. There’s only a minor difference in variable
names: instead of µ̂ and δ̂ we have µ̂x and µ̂y − µ̂x.
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Example 7.7 (Non‐parametric resampling).
We are given datasets x = (7.2, 7.3, 7.8, 8.2, 8.8, 9.5) and y = (8.3, 8.5, 9.2). The difference
between the two sample means is ȳ − x̄ = 0.53. Find a 95% confidence interval using non-
parametric resampling.

1 x = [7.2 , 7.3 , 7.8 , 8.2 , 8.8 , 9.5]
2 y = [8.3 , 8.5 , 9.2]
3

4 def rxy_star () :
5 return (numpy.random. choice(x , s ize=len (x)) ,
6 numpy.random. choice(y , s ize=len (y)))
7 def d(xy ) :
8 x_star , y_star = xy
9 return numpy.mean(y_star) − numpy.mean(x_star)
10 d_sample = [d(rxy_star ()) for _ in range(10000)]
11

12 lo , hi = numpy. quantile (d_sample, [.025 , .975])
13 plt . h ist (d_sample, bins=30, alpha=.4)
14 plt . axvline ( lo , l i nes ty l e=’dotted ’ , color=’0.4 ’ )
15 plt . axvline (hi , l i nes ty l e=’dotted ’ , color=’0.4 ’ )
16 plt . axvline (d((x , y)) , l i nes ty l e=’dashed ’ , color=’black ’ )
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Why is the answer here so different to exercise 7.5? Note that the y datapoints are clustered
tightly together, more tightly than the x datapoints. If we resample X∗ and Y ∗ separately, as we did
here, then we’ll end up seeing very little variation in Y ∗. If we use a parametric model like that of
exercise 7.5, in which the two datasets are assumed to share a common variance, then the wider spread
of x values will bleed through into higher variation in Y ∗, leading to higher variation in Y ∗ −X∗.

Which is correct? That’s something that we can’t answer from the data, we can only answer
from the context. Do we have reason to believe that the variability should be the same in both cases?
Anyway, resampling from a dataset of size n = 3 is sure to cause problems of interpretation—there’s
just too little information to make sound inferences.

Exercise 7.8 (Amazon fires).
The fires in the Amazon in summer 2019 were widely reported. According to satellite data from
MODIS22, the number of fires detected from the beginning of the year to 29 August 2019 was
95092, more than double that seen in the same period the previous year. The chart below shows
the corresponding numbers over a span of years.
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We wish to know if the 2019 value is notably higher than the values since 2011, when Dilma

22Data from https://www.globalfiredata.org/forecast.html, csv at https://teachingfiles.blob.core.
windows.net/datasets/modis.csv

https://www.globalfiredata.org/forecast.html
https://teachingfiles.blob.core.windows.net/datasets/modis.csv
https://teachingfiles.blob.core.windows.net/datasets/modis.csv
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Rousseff took office as president of Brazil. Assuming that the 2011–2018 values are Normal(µ, σ2),
and the 2019 value is Normal(µ+ δ, σ2), find a 95% confidence interval for the maximum like-
lihood estimator δ̂.

First, here is the code behind the plot. The full dataset includes cumulative number of fires on each
day of the year; day 240 is 29 August.

1 modis = pandas . read_csv( ’ https :// teachingf i les . blob . core .windows. net/datasets/modis . csv ’ )
2 df = modis [modis .day_of_year==240]
3 plt . bar(df . year . values , df . num_fires , width=0.8, alpha=.4)
4 plt . xticks (numpy. arange(2003,2020,2), rotation=−60)

The analysis is exactly the same as for exercise 7.5.

5 x = df . num_fires [( df . year>=2011) & (df . year<=2018)].values
6 y = df . num_fires [ df . year==2019].values
7 . . .

In the end, the maximum likelihood estimate for δ is 31,000, and the 95% confidence interval is
[−70, 000, 134, 000]. This is does not support the conclusion that 2019 is notably different to pre-
ceeding years.
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Exercise 7.9.
An exam question was attempted by 68 students from the Computer Science (CS) course, and
40 students from the Natural Sciences (NST) course. The question was marked out of 20. The
number of students who attained each mark were

mark 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
CS 0 0 0 2 2 2 1 0 3 2 4 8 6 2 8 8 4 4 6 4 2
NST 1 0 0 1 1 0 1 4 2 0 2 2 8 6 4 3 1 2 0 1 1

The mean mark for CS students is 13.0, and that for NST students is 11.6, a difference of 1.5.
Find a 95% confidence interval for the difference.

It’s not immediately obvious what probability distribution we might use for this data, so let’s use the
non-parametric approach.

The data given in the question is pre-aggregated (i.e. it shows the number of students for each
mark), but it’s perhaps easier to work with unaggregated data. In the code below, cs_star() gener-
ates 68 unaggregated marks for CS students, drawn from the empirical distribution, and nst_star()
generates 40 unaggregated marks for NST students.

1 csn = numpy. array ([0 ,0 ,0 ,2 ,2 ,2 ,1 ,0 ,3 ,2 ,4 ,8 ,6 ,2 ,8 ,8 ,4 ,4 ,6 ,4 ,2])
2 nstn = numpy. array ([1 ,0 ,0 ,1 ,1 ,0 ,1 ,4 ,2 ,0 ,2 ,2 ,8 ,6 ,4 ,3 ,1 ,2 ,0 ,1 ,1])
3 m= numpy. arange(0,21)
4 def cs_star () : return numpy.random. choice(m, p=csn/numpy.sum(csn) , s ize=numpy.sum(csn))
5 def nst_star () : return numpy.random. choice(m, p=nstn/numpy.sum(nstn ) , s ize=numpy.sum(nstn))

Now we simply resample the marks, and for each resampled dataset we record the mean difference.
The 95% confidence interval turns out to be [−0.17, 3.15]. This suggests that CS students might be
cleverer, but the evidence isn’t compelling since the confidence interval includes 0.

6 diff_sample = [numpy.mean(cs_star ()) − numpy.mean(nst_star ()) for _ in range(10000)]
7 lo , hi = numpy. quantile (diff_sample , [.025 , .975]) # returns (-0.17, 3.15)
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7.3. Hypothesis testing and p‐values
It’s often useful to frame questions as I have a default model, which I’ll stick with unless the evidence
says otherwise. The default model is also known as the null hypothesis and written H0.

For example, “My default assumption is that this proposed drug is ineffective, and the NHS
shan’t prescribe it unless there is evidence to the contrary.” Or “My default assumption is that the
fancy new machine learning algorithm is no different to the older simpler one, and the journal I edit
will reject a paper proposing the new algorithm unless there’s evidence that it’s an improvement.” Or
“I will give the police the benefit of the doubt and assume they are not racially biased, unless there is
evidence to persuade me otherwise.”

We saw in section 7.2 how to find a confidence interval for the difference in outcomes between
two groups. That’s the best tool to use, if we’re looking to measure a difference. But in other situations
it’s insufficient:

• If we ask “is there evidence of police bias?” we’re not looking for the difference between just
two groups—the police dataset from page 35 lists five different ethnic groups, and a difference
between any pair of these is evidence of bias. The hypothesis-testing approach lets us ask
composite questions about multiple groups.

• If we have outcome measurements from two systems A and B, and we ask “does A have better
outcomes than B?”, then confidence intervals are the right approach. But we could also ask the
broader question “does A have different outcomes to B?” For example, A might have greater
variability than B, even if they have the same mean outcome. The hypothesis-testing approach
lets us ask composite questions about multiple dimensions of difference.

Here’s a general purpose procedure for hypothesis testing, due to Ronald Fisher.23

Fisher’s hypothesis testing procedure. Let x be the full dataset, and let H0 be our null hypothesis.

1. Define a function t : x 7→ R, called the test statistic. It can be whatever function of the
data we like (or we are told to use). Just make sure it’s a function only of the observable
data—don’t let it use any unknown parameters, because they’re unknown!

2. Create synthetic datasets X∗ using resampling, either parametric or non-parametric. The
important thing is to use a resampling scheme that fits with the null hypothesis H0. Illus-
trations are given below.

3. Compute the distribution of the test statistic t(X∗). Plot a histogram of t(X∗), and mark
on it the actual observed value t(x). Draw whatever inferences are appropriate. (If t(x)
lies at an extreme end of the histogram, it’s a sign that something fishy is going on.)

This hypothesis testing procedure is generic. It doesn’t tell us how to pick a test statistic, nor how to
resample, nor what conclusions are appropriate. In our first illustration, the summer 2019 fires in the

Amazon fires:
exercise 7.10 page 83Amazon, we’re told all these things. In other problems, it’s useful to have guidelines …

Step 1 — the null hypothesis. In many problems, a useful starting point is to write down a general
model with many parameters, and to express H0 as a restriction on the parameters. For example, we
might have measurements for individuals from several different groups, and we wish to know whether
the groups are all similar: we’d write down a general model with different parameters for each group,
and write H0 as “the parameters for the different groups are all equal”. Our second illustration, testing

testing equality of group
means: exercise 7.11
page 83

equality of group means, goes into detail.
In problems like this, it’s sensible to choose a test statistic24 that’s based on maximum likelihood

estimators for the general model. Our third illustration, testing for racial bias in policing, illustrates.
testing for racial bias:
exercise 7.12 page 84

Step 3 — the alternative hypotheses. To decide what counts as ‘extremely fishy’, we need to spell
out the alternatives to H0, and consider the likely range of values of the test statistic under these

23Ronald Fisher, the “genius who almost single-handedly created the foundations for modern statistical science.” He was
head of the Department of Eugenics at UCL, and later president of Gonville and Caius in Cambridge. The college has a stained
glass window depicting his statistical work.

24For the purposes of this course, we’ll work with ad hoc test statistics. There are systematic ways to design good test
statistics, with close connection to Kullback-Leibler divergence, which you can read about in the extended version of these
lecture notes.
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alternatives. This guides us to appropriate inferences, and in particular it lets us compute the so-called
p-value. Here is the general approach. It is illustrated in our final example, the sign test.

sign test: example 7.13
page 86

Neyman–Pearson approach. Let x be the full dataset, and let H0 be our null hypothesis.
1. As before, define a test statistic t : x 7→ R, and create synthetic datasets X∗ using resam-

pling under the null hypothesis H0. Plot a histogram of t(X∗) and mark on t(x)

2. Propose an alternative hypothesis H1. Create resampled versions of the dataset under H1,
and plot a histogram. Repeat for as many alternatives as you have in mind.

3. Use the alternative histograms to decide what counts as an extreme value on the original
histogram:
• If all the alternative histograms are shifted right, then large values of t(x) are grounds

for rejecting H0. This is called a one-sided test.
• If all the alternative histograms are shifted left, then small values of t(x) are grounds

for rejecting H0. This is also a one-sided test.
• If some of them shift left and others shift right, then extreme values of t(x) on either

side are grounds for rejecting H0. This is called a two-sided test.
4. Report the probability (assuming H0 is true) of seing a test statistic at least as extreme as

the value t(x) that we actually saw. This is called the p-value.
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I LLUSTRATIONS

Exercise 7.10 (Amazon fires).
For the Amazonian fire data on page 79, let xi be the number of fires recorded for year i. The
media reported t = x2019/x2018, the year-on-year increase in number of fires, and claimed that
this value was worryingly large.

Consider the null hypothesis that (x2011, . . . , x2019) are drawn independently from the
same distribution, say Normal(µ, σ2) where µ and σ are to be estimated from the data. Under
this hypothesis, what is the probability of seeing a value as large as or larger than t?

The question indicates that we are to use parametric resampling and suggests the Normal distribution.
(Parametric resampling is the best choice for problems like this with very few datapoints. Whether or
not a Normal distribution is appropriate is something that can be answered either by a domain expert,
or a data scientist with much more data.)

Following the parametric resampling approach described in example 7.1 page 75, we first find
maximum likelihood estimators µ̂ and σ̂, and then generate new observations using these parameters.

1 # Load the dataset, and extract the xi we want as a numpy vector
2 modis = pandas . read_csv( ’ https :// teachingf i les . blob . core .windows. net/datasets/modis . csv ’ )
3 df = modis [modis .day_of_year==240]
4 x = df . loc [ df . year>=2011].sort_values( ’ year ’ ) . num_fires . values
5

6 # The parametric resampling procedure
7 µ̂ = numpy.mean(x)
8 σ̂ = numpy. sqrt (numpy.mean((x−µ̂)∗∗2))
9 def rx_star () : return numpy.random.normal( s ize=len (x) , loc=µ̂ , scale=σ̂)
10

11 # The test statistic
12 def t (x ) : return x[−1] / x[−2]
13 t_sample = numpy. array ( [ t ( rx_star ()) for _ in range(10000)])
14

15 # What we’d expect to see if H0 was true
16 plt . h ist (t_sample , bins=np. linspace (−.5 ,3.5 ,50) , alpha=.4)
17 plt . axvline ( t (x) , l i nes ty l e=’dashed ’ , color=’black ’ )
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The actual observed year-on-year increase, t(x) = 2.07, is very large compared to what we’d expect
to see. The probability of seeing a year-on-year increase this large or larger is

18 p = numpy.mean(t_sample>=t(x)) # 0.0511

This is known as the p-value.

Exercise 7.11 (Equality of group means).
We are given three groups of observations from three different systems,

x = [7.2, 7.3, 7.8, 8.2, 8.8, 9.5]

y = [8.3, 8.5, 9.2]

z = [7.4, 8.5, 9.0],

and we wish to know whether they all come from the same distribution, or whether there are three
different distributions. Start with a general probability model in which they could potentially
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come from three different distributions,

Xi ∼ Normal(a, σ2), Yi ∼ Normal(b, σ2), Zi ∼ Normal(c, σ2)

Let H0 be that the three distributions are identical i.e. that a = b = c, or equivalently

Xi ∼ Yi ∼ Zi ∼ Normal(µ, σ2).

Consider the test statistic

t = (â− µ̂)2 + (b̂− µ̂)2 + (ĉ− µ̂)2

where hats denote maximum likelihood estimators. If H0 were true, we’d expect t(x) to be small.
Find the value of the test statistic for the data given. What is the probability of seeing a

value this large or larger, if H0 is true?

First, let’s work out how to resample the dataset. The general rule is “use a resampling scheme that
fits with the null hypothesis.” Here, the null hypothesis says that all three datasets are drawn from
Normal(µ, σ2), so we’ll fit µ and σ to the entire collection of observations, and resample the three

fitting a Gaussian:
exercise 1.8 page 15) datasets from those common values. Note that resampling must create a full dataset mirroring all our

data, i.e. it should create (X∗, Y ∗, Z∗).

1 x = [7.2 , 7.3 , 7.8 , 8.2 , 8.8 , 9.5]
2 y = [8.3 , 8.5 , 9.2]
3 z = [7.4 , 8.5 , 9.0]
4

5 data = numpy. concatenate ( [x , y , z ])
6 µ̂ = numpy.mean(data)
7 σ̂ = numpy. sqrt (numpy.mean(data−µ̂)∗∗2))
8

9 def rxyz_star () :
10 return (numpy.random.normal( s ize=len (x) , loc=µ̂ , scale=σ̂ ) ,
11 numpy.random.normal( s ize=len (y) , loc=µ̂ , scale=σ̂ ) ,
12 numpy.random.normal( s ize=len (z) , loc=µ̂ , scale=σ̂))

Next the test statistic. We’ve seen the normal distribution enough times by now that we can just write
down the maximum likelihood estimators:

Python unpacking syntax:
if z is a list or tuple and f
is a function, then f(*z)
denotes f(z[0],z[1],…).

13 def t (x , y , z ) :
14 µ′ = numpy.mean(numpy. concatenate ( [x , y , z ]))
15 a′ ,b′ ,c′ = [numpy.mean(v) for v in [x , y , z ] ]
16 return (a′ − µ′)∗∗2 + (b′ − µ′)∗∗2 + (c′ − µ′)∗∗2
17

18 # The spread of values we’d expect to see if H0 were true
19 t_sample = numpy. array ( [ t(∗rxyz_star ()) for _ in range(10000)])
20

21 # The probability of seeing t(X∗, Y ∗, Z∗) ≥ t(x, y, z), if H0 were true
22 t (x , y , z) # value: t = 0.159

23 p = numpy.mean(t_sample >= t(x ,y , z)) # answer: p = 0.592

Exercise 7.12 (Racial bias in police stop‐and‐search).
For the police stop-and-search data, page 35, we wish to know if there’s evidence of any racial
bias in Cambridgeshire policing. The numbers of stops that led to something being found, versus
nothing being found, are

Asian Black Other White
find 116 170 28 1060
nothing 76 100 9 680

Let nk be the total number of stops for people of ethnicity k, and let xk be the number where
something was found. Consider the general model Xk ∼ Binom(nk, βk), for which the maxi-
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mum likelihood estimator is simply β̂k = xk/nk. Define the overall bias score to be

d = max
k,k′

∣∣β̂k − β̂k′
∣∣.

Larger values correspond to more bias.
Compute d for the data given. Let the null hypothesis be that there is no bias, i.e. that the

βk are all equal. Under this hypothesis, what’s the probability of seeing a value greater than or
equal to the actual d for the data given?

1 # It’s a big file, so retrieve it and store locally for future use
2 import os . path
3 i f os . path . ex ists ( ’ stop−and−search . csv ’ ) :
4 print (” f i l e already downloaded”)
5 else :
6 !wget ”https :// teachingf i les . blob . core .windows. net/datasets/stop−and−search . csv”
7 police = pandas . read_csv( ’ stop−and−search . csv ’ )
8

9 # Preprocess the data
10 df = police . loc [~pandas . i snu l l ( police [ ’ officer_defined_ethnicity ’ ] ) &
11 ~pandas . i snu l l ( police [ ’outcome ’ ]) &
12 ( police [ ’ force ’]==’cambridgeshire ’ ) ] . copy()
13 df [ ’ eth ’ ] = df [ ’ officer_defined_ethnicity ’ ]
14 df [ ’y ’ ] = numpy.where(df [ ’outcome ’ ] != ’False ’ , ’ f ind ’ , ’nothing ’ )
15

16 # Quick tabulation, to check what data we’re working with
17 tab = df . groupby([ ’y ’ , ’ eth ’ ] ) . apply( len ) . unstack()

The general rule is “use a resampling scheme that fits with the null hypothesis”. Here, the null hy-
pothesis is that all groups share a common parameter, Xk ∼ Binom(nk, θ), and it’s easy to check
that the maximum likelihood estimator for θ is θ̂ = (

∑
k xk)/(

∑
k nk).

18 x = tab . loc [”find” ]
19 n = tab . loc [”find” ] + tab . loc [”nothing” ]
20 θ̂ = sum(x) / sum(n)
21 def rx_star () : return [numpy.random. binomial(nk, θ̂) for nk in n]
22

23 # The test statistic
24 def d(x ) :
25 β = numpy. array(x) / n # a vector of length 4
26 res = 0
27 for e1 in range( len (n)) :
28 for e2 in range( len (n)) :
29 res = max( res , abs(beta [ e1 ] − beta [ e2 ]))
30 return res
31 d_actual = d(x)
32 d_samples = numpy. array ( [d(rx_star ()) for _ in range(10000)])
33

34 # What we’d expect to see under H0

35 plt . h ist (d_samples , bins=50, alpha=.4)
36 plt . axvline (d_actual , color=’black ’ , l i nes ty l e=’dashed ’ )
37 p = numpy.mean(d_samples > d_actual) # returns 0.1177

The probability of seeing a bias score this high or larger, if H0 were true, is 11.8%. This data doesn’t
provide compelling evidence25

25A conventional threshold is p = 0.05. Fisher suggested “If p is between .1 and .9 there is certainly no reason to suspect
the hypothesis tested. If it is below .02 it is strongly indicated that the hypothesis fails to account for the whole of the facts. We
shall not often be astray if we draw a conventional line at .05 and consider that [lower values of p] indicate a real discrepancy.”
R. A. Fisher. Statistical methods for research workers. 1925. URL: http://www.haghish.com/resources/materials/
Statistical_Methods_for_Research_Workers.pdf, page 82

When this course was taught in 2018, the police data at the time reported a value of p = 0.969 (using data up to 2018-11-01
and excluding ethnicity level ”Other” on grounds of insufficient data). Fisher also pointed out that very large values for p are

http://www.haghish.com/resources/materials/Statistical_Methods_for_Research_Workers.pdf
http://www.haghish.com/resources/materials/Statistical_Methods_for_Research_Workers.pdf
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Example 7.13 (Sign test).
I have a dataset consisting of 500 records, each record a pair (xi, yi) where xi is the predictor
variable and yi is the true label. For example, xi might be the text of a movie review, and
yi ∈ {☺,😐,☹} might be the sentiment.

I have built two classification algorithms, A and B, and I wish to know if one is better than
the other. I run them both on each record to get predicted classes A(xi) and B(xi). I compare
these answers to the true label yi, and I obtain a grade

wi =


”A” if A is correct, B not
”B” if B is correct, A not
”eq” if either both are correct, or both incorrect.

I count up the total number for each grade, to get n = (nA, nB , neq) = (70, 50, 380).
Consider the general probability model for the grades

P(W = ”A”) = pA, P(W = ”B”) = pB , P(W = ”eq”) = peq.

where we require pA + pB + peq = 1. Let the null hypothesis H0 be “the two algorithms are
equally as good”, i.e. pA = pB , and let the alternative hypothesis be the general model, i.e. “the
two algorithms might or might not be as good”.

Using the test statistic t = nA + neq/2, decide whether to use a one-sided or two-sided
test, and find the p-value.

Let’s implement a general purpose resampler, which can be used for the p parameters under H0, or
for any other p parameters.

1 # The data
2 n = (nA,nB,neq) = (70,50,380)
3

4 # Resample based on an arbitrary p, and compute test statistic
5 def rn_star(p) : return numpy.random.multinomial(n=sum(n) , pvals=p)
6 def t (nA,nB,neq) : return nA + neq/2

The maximum likelihood estimators under H0 can be found using the same method as in example 1.3
page 3. The result is

p̂A = p̂B =
(nA + nB)/2

nA + nB + neq
, p̂eq =

neq

nA + nB + neq
.

Python unpacking syntax:
t(*rn_star(p)) means:
call rn_star(p), get back
a tuple (nA,nB,neq),
and ‘unpack’ the call, i.e.
call t(nA,nB,neq).

7 # Resampled values of the test statistic, under H0

8 p0 = [(nA+nB)/2/sum(n) , (nA+nB)/2/sum(n) , neq/sum(n)]
9 t_samples = numpy. array ( [ t(∗rn_star(p0 )) for _ in range(10000)])
10

11 f ig , axs = plt . subplots (5 ,1 , sharex=True , f i g s i ze=(4.5,4))
12

13 # Plot the histogram of resampled t values under H0

14 axs [0 ] . h ist (t_samples , bins=30, alpha=.4)
15 axs [0 ] . axvline ( t(∗n) , l i nes ty l e=’dashed ’ , color=’black ’ )
16 axs [0 ] . t i t l e ( ’H0 ’ )

grounds for suspicion; p = 0.969 indicates that the β̂k coefficients are much closer together than one would expect by chance.
An indication of the police numbers being fudged?
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17

18 # Plot more alternative histograms for randomly chosen H1 parameters
19 for ax in axs [ 1 : ] :
20 p = numpy.random. uniform( size=3)
21 p = p / sum(p)
22 ax . hist ( [ t(∗rn_star(p)) for _ in range(10000)] , bins=30, alpha=.4)
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If an alternative hypothesis is true, the distribution of t might be shifted to the right, or it might be
shifted to the left. Either is possible, depending on the alternative. Thus an extreme value of t(x),
lying in either tail of the distribution of t(X∗) under H0, is evidence for rejecting H0 in favour of the
alternative.

Below is another plot, showing the histogram under H0. It marks out all samples of t(X∗) that
are larger than the observed value t(x), as well as an equal number of samples on the left hand side.
In other words, a two-sided region. The p-value, i.e. the total probability of lying in this two-sided
region, is 2P(t(X∗) > t(x)) which in this problem turns out to be ≈ 5.8%. According to Fisher, a
p-value in the range 5%–10% is grounds for suspicion that the two classifiers might be different, but
not clear evidence. Best gather more data.

23 p = 2 ∗ numpy.mean(t_samples > t(∗n)) # 0.0582
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