
61

Part III
Inference
Inference is the business of drawing conclusions about the world based on data.

If one scientist tosses four coins and gets one head, he’ll estimate that the next coin will be
heads with probability 25%. If another scientist tosses 12 coins and gets three heads, she’ll make the
same estimate. But clearly there is a difference between the two—the second scientist should be more
confident in her estimate.

exercise 1.1 page 1: after
observing x heads from
n tosses, the estimated
probability of heads is
p̂ = x/n

Everything that we learnt in part I was about making estimates. But an estimate on its own is
not a sensible statement about the world—it would almost certainly be incorrect to say “the actual
true probability of heads is 25%”. To say something sensible, something that at least has the form of a
valid statement about the world, we need a way to express not just the estimate but also our confidence
in the estimate.16

How should confidence be measured? Statisticians have spent the better part of the last century
thinking about this, and their work has broadly speaking fallen into two schools of thought, Bayesian-
ism and frequentism. In this part of the book, we will explore what these two schools have to say
about inference.

∗ ∗ ∗

The machine learning community has by and large concentrated on estimation and has failed
to grasp the challenge of inference (though there are exceptions—for example there is a strand of
work at Cambridge bringing Bayesianism into deep learning.) The example below is a summary, of
the sort you’ll see all over blog posts and news stories, of some ingenious research into adversarial
attacks against neural network image classifiers. The summary confuses ‘probability estimate’ with
‘confidence’. If we get our concepts muddled right at the beginning when we’re framing a problem,
we have no hope of solving it.

Example 5.1 (The adversarial panda17).

panda,
57.7%
confidence

+0.007×

nematode,
8.2%
confidence

=

gibbon,
99.3%
confidence

A neural network was trained to classify images. When shown the leftmost image, it reports
“panda, 57.7% confidence”. The center image is carefully chosen noise. By blending the

16On the other hand, if our goal is to make decisions rather than inferences, then there’s nothing wrong with “I shall proceed
as though the probability of heads is 25%” This has the form of a valid statement, because it’s a statement about something we
know, namely our own plans. Whether or not it’s a good idea is another matter—and that depends on confidence.

62

original panda with noise at 0.7% opacity, we obtain the rightmost image, which the neural
network interprets as “gibbon, 99.3% confidence”.

Scientists also struggle with inference:

Example 5.2 (Extract from BBC News18).
Signal may be from first ‘exomoon’

The work by [these astronomers] assigns a confidence level of four sigma to the signal from the
distant planetary system. The confidence level describes how unlikely it is that an experimental
result is simply down to chance. If you express it in terms of tossing a coin, it’s equivalent to
tossing 15 heads in a row.

But [one of the astronomers] said this is not the best way to gauge the potential detection.
He told BBC News: “We’re excited about it... statistically, formally, it’s a very high probabil-
ity. But do we really trust the statistics? That’s something unquantifiable. Until we get the
measurements from Hubble, it may as well be 50–50 in my mind.”

Formal statistics is the way to quantify uncertainty. If an astronomer doesn’t trust the statistics, then
they are doing the wrong statistics—they haven’t framed their problem in a way that captures their
uncertainty, nor how data can shift that uncertainty. It’s the job of a scientist to say “This is how
empirical evidence can change my beliefs.” If you can’t do this, if you haven’t got the conceptual tools
to handle empirical evidence, then you’re not a scientist.

17I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and Harnessing Adversarial Examples”. In: ArXiv e-prints (Dec.
2014). arXiv: 1412.6572 [stat.ML]

18http://www.bbc.co.uk/news/science-environment-40741545

https://arxiv.org/abs/1412.6572
http://www.bbc.co.uk/news/science-environment-40741545

63

6. Bayesianism
Suppose, as usual, that we collected data x and we believe it comes from a probability model PrX(x|θ),
where X is a random variable representing possible outcomes of an experiment and θ is an unknown
parameter about which we’d like to make inferences.

Bayesianism says we should represent our uncertainty about unknown parameters by using a
probability distribution. Instead of “this is a parameter whose value I don’t know”, we say “this is
a parameter whose actual value I don’t know, but whose distribution I do know”. Our starting point
isn’t “complete ignorance about θ”, it’s “my prior beliefs tell me about the distribution that θ comes
from”.

One view of probability is that it’s a tool for describing random events, for example the number
of particles emitted from a lump of radioactive matter (commonly modelled with a Poisson distri-
bution). Bayesianism is a gigantic conceptual step away from this. Bayesianism says that not only
should we use probability to describe random phenomena in nature, we should also use it to describe
our subjective state of mind. Not only do we work with PrX(x | θ), we also work with PrΘ(θ) and
PrΘ(θ |X = x).

6.1. Finding the posterior distributions

The steps in a Bayesian analysis.

1. LetΘ denote the unknown parameter, treated as a random variable. Invent a distribution for
it, PrΘ(θ). This is called the prior distribution. It must include all the unknown parameters
for the problem.

Bayesianism requires us to set down a prior belief about θ. If we don’t have a prior belief,
Bayesianism says, then there are no grounds for us to make inferences. An exam question
will tell you which prior to use, but real life doesn’t.

2. Write out PrX(x |θ), the density for the observed data conditional on θ. Here X represents
all the observed data, whether it be a single value or a collection.

3. Use Bayes’s rule to find the distribution of (Θ |X = x). This step is called applying the
Bayes update, and the resulting distribution is called the posterior distribution. We can
apply Bayes’s rule computationally or mathematically, as described in section 6.

4. Any conclusions we want to draw about the unknown parameters should be expressed as
statements about the distribution of (Θ |X = x). For example, we could plot a histogram.
Other standard readouts are described in section 6.2.

6.1.1. USING COMPUTATION

Section 3.6.2 described the computational approach to finding the posterior distribution. Translating
that section to the variable names we’re using here,

1. Take a random sample (θ1, . . . , θm) from the prior distribution Θ

2. For each sampled value, compute a weight

wi =
PrX(x | θi)∑
j PrX(x) | θj

(Care should be taken to avoid underflow in cases where all the PrX values are small.)
3. Probabilities and expected values for the posterior distribution can be approximated by

P(Θ ∈ A |X = x) ≈
∑
i=1m

wi1θi∈A, E
(
h(Θ) |X = x) ≈

m∑
i=1

wih(θi).

In the examples below, we’ll illustrate the posterior distribution using a weighted histogram: choose
a set of bins, and for each bin compute P(Θ ∈ bin |X = x), and draw a bar of this height.

64 6.1 Finding the posterior distributions

Exercise 6.1.
I have a coin, which might be biased. I toss it n = 10 times and get x = 9 heads. Let Θ be the
probability of heads, an unknown parameter. Using the prior distribution Θ ∼ U [0, 1], find the
posterior distribution, and depict it with a histogram.

First, take a sample of values from the prior distribution:

1 θ_samp = numpy.random.uniform(size=10000)

Second, write out the density function for the observed data. We’ll assume the data is drawn from a
Binom(n, θ) random variable, which has

PrX(x | θ) =
(
n

x

)
θx(1− θ)n−x, x ∈ {0, 1, . . . , n}.

Use this to compute a weight for each sampled θ. There’s no point including the constant term
(
n
x

)
in

prx since it’ll cancel out when we find weights.

2 n, x = 10,9
3 prx = theta_samp∗∗x ∗ (1−theta_samp)∗∗(n−x)
4 w = prx / numpy.sum(prx)

Finally, plot a weighted histogram to show the posterior distribution. Here is the output, together with
a histogram of the prior distribution (weighted by 1/10000 to make the two histograms comparable).

5 plt . h ist (θ_samp, weights=w, bins=numpy. linspace (0 ,1 ,30))

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04
prior

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15
posterior

Exercise 6.2 (Multiple observations / avoiding underflow).
I toss a coin, which might be biased. I toss it n = 10 times and get x1 = 9 heads. I do four
more repeats of this experiment and get [x2, x3, x4, x5] = [9, 10, 8, 10] heads. Using the prior
distribution Θ ∼ Uniform[0, 1], find the posterior distribution.

This is exactly the same as the previous exercise, except that prx is different. The data density is

Pr(x1, . . . , x5 | θ) = Pr(x1 | θ)× · · · Pr(x5 | θ) assumimg successive trials are independent

= const × θs(1− θ)5n−s where s =
∑
i

xi.

To avoid underflow, we’ll scale by a well-chosen factor before normalizing the weights.

1 θ_samp = numpy.random.uniform(size=10000)
2

3 n = 10
4 sx = numpy.sum([9 ,9 ,10 ,8 ,10])
5 logprx = sx ∗ numpy. log(θ_samp) + (5∗n−sx) ∗ numpy. log(1−θ_samp)
6 w = numpy. exp(logprx − max(logprx))
7 w = w / numpy.sum(w)
8

9 plt . h ist (θ_samp, weights=w, bins=numpy. linspace (0 ,1 ,30))

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04
prior

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

posterior

6.1 Finding the posterior distributions 65

Exercise 6.3 (Multiple unknowns).
We have a random sample x = (x1, . . . , xn) drawn from X ∼ Uniform[a, a+ b] where a and b
are unknown parameters. Using A ∼ Exp(λ0) and B ∼ Exp(µ0) as prior distributions, where
λ0 = 0.2 and µ0 = 0.1, find the posterior distribution of B, for the data

x = [2 , 3 , 2.1 , 2.4 , 3.14 , 1.8]

There are two unknown parameters here. To apply Bayes’s rule, our prior distribution needs to specify
all unknown parameters, since PrX(data |params) depends on them. Therefore we generate a random
sample of (A,B) values. We’ll assumeA andB are independent. (If a question tells you about random
variable distributions and doesn’t explicitly say otherwise, you should take them to be independent,
and state that you are doing so.)

1 λ0 ,µ0 = 0.2 , 0.1
2 samples = 100000
3 a_samp = numpy.random. exponential (scale=1/λ0 , s ize=samples)
4 b_samp = numpy.random. exponential (scale=1/µ0 , s ize=samples)

The density function for a single observation is

PrX(x | a, b) = 1

b
1a≤x≤a+b, x ∈ R.

(In any question where the bounds of a random variable are themselves being estimated, it’s helpful to
use indicator functions. That way, the algebra of indicator functions forces you to keep explicit track
of bounds.) The density function for the entire dataset is

Pr(x1, . . . , xn | a, b) = 1

bn
1a≤x1≤a+b × · · · × 1a≤xn≤b

=
1

bn
1a≤mini xi

1maxi xi≤a+b.

For every prior sample (ai, bi), we need to compute Pr(x | ai, bi). The code below uses numpy vector-
ized syntax: the a_samp and b_samp vectors line up, so we get a vector of prx values, one for each
pair (ai, bi).

5 x = [2 , 3 , 2.1 , 2.4 , 3.14 , 1.8]
6 n = len (x)
7 minx,maxx = min(x) , max(x)
8 prx = 1/b_samp∗∗n ∗ numpy.where((a_samp<= minx) & (maxx<= a_samp+b_samp) , 1 , 0)
9 w = prx / sum(prx)

This question asks for the posterior distribution of B. Our code has actually produced a weighted
posterior sample of (A,B). If all we want to know about is B, just ignore A. (Formally, this is finding
the marginal distribution of B—see section 3.4.) Here is the posterior histogram of B, together with
the prior.

10 plt . h ist (b_samp, weights=w, bins=numpy. linspace (0 ,6 ,30))

0 2 4 6
0.000

0.005

0.010

0.015

0.020
prior for B

0 2 4 6
0.00

0.05

0.10

0.15

0.20
posterior for B

6.1.2. USING MATHS

Section 3.6.1 described how to apply Bayes’s rule using maths. Translating into the variable names
we’re using here,

66 6.1 Finding the posterior distributions

1. Write down the prior density PrΘ(θ). If there are multiple unknown parameters, this should be
a joint density.

2. Write down the data density PrX(x | θ).
3. Apply Bayes’s rule to get the posterior density

PrΘ(θ |X = x) = κPrΘ(θ)PrX(x | θ).

The constant κ can in principle be computed using the “probabilities sum to one” rule. Chances
are, either the integral is unnecessary because we pattern-match and recognize the equation as
the density of a standard random variable, in which case we should name that random variable;
or the integral is intractable, in which case we should leave the answer with κ in.

4. If there are multiple unknowns and we’re only interested on one of them, we should find the
marginalization:
section 3.4 page 43 marginal density of the parameter we’re interested in by integrating out the others. The others

are called nuisance parameters.

Mathematical solution to exercise 6.1:
The prior distribution is Θ ∼ Uniform[0, 1] which has density PrΘ(θ) = 1. For the data, as for our
earlier solution,

PrX(x | θ) = const × θx(1− θ)n−x.

Applying Bayes’s rule, the posterior density is

PrΘ(θ |X = x) = κ× 1× θx(1− θ)n−x.

Hopefully this reminds you of the Beta distribution—if Z ∼ Beta(α, β) then it has density

PrZ(z) =
(
α+ β − 1

α− 1

)
zα−1(1− z)β−1

and so, using “densities sum to one”, we conclude that (Θ |X = x) ∼ Beta(x+ 1, n− x+ 1).

Mathematical solution to exercise 6.3:
There are two unknown paramaters here. To apply Bayes’s rule, our prior distribution needs to specify
all unknown parameters, since PrX(data |params) depends on them. Therefore we need to write down
a joint density for the pair (A,B):

PrA(a) = λ0e
−λ0a

PrB(b) = µ0e
−µ0b

PrA,B(a, b) = λ0µ0e
−λ0a−µ0b assuming independence.

As before, the density function for the entire dataset is

Pr(data | a, b) = 1

bn
1a≤mini xi

1maxi xi≤b.

Now use Bayes’s rule to find the posterior density of (A,B) given the data:

PrA,B(a, b | data) = κ
1

bn
e−λ0a−µ0b1a≤mini xi

1a+b≥maxi xi
.

We have gathered terms that don’t involve (a, b) into the constant κ.
The question asks for the posterior distribution of B. We’ve just worked out the posterior joint

distribution of (A,B), so the next step is to find the marginal for B by integrating out A.

PrB(b | data) =
∫
a

PrA,B(a, b | data) da

= κ
e−µ0b

bn

∫
a

e−λ0a1a≤mini xi
1a≥maxi xi−b da

= κ
e−µ0b

λ0bn

(
e−λ0 max(maxi xi−b,0) − e−λ0 mini xi

)
1b≥maxi xi−mini xi

.

The last step involved some heroic integration, and even so we’re stuck—this isn’t any standard distri-
bution, and it looks like it’ll be intractable to find the normalizing constant. (Problems with intractable
integrals like this are where computational Bayes shows its strength!)

6.1 Finding the posterior distributions 67

Exercise 6.4 (Conjugate prior).
Here is an generalisation of exercise 6.1. That exercise used a uniform prior distribution, but
now we will use a more expressive distribution.

I have a coin, which might be biased. I toss it n times and get x heads. Let θ be the
probability of heads. Using the prior distribution Θ ∼ Beta(α0, β0) for given constants α0 > 0
and β0 > 0, show that the posterior distribution is

(Θ | x) ∼ Beta(α+ x, β + n− x).

(The prior distribution was Beta, and we find that the posterior is another Beta but with different
parameters. This is called a conjugate prior.)

∗ ∗ ∗

In well-chosen models, it shouldn’t matter too much what the prior is. For example, in exercise 6.4, ifn
is very large then α and β have little influence. If we have too little data then the prior distribution will
have a big impact on our answer. Bayesianism makes it easy to crank a handle and get out answers—
but you should always stop and reflect whether your answers really reflect the data or whether they
just reflect the assumptions you put in. This is usually easy to see from a maths formula, much harder
to see in the output of a computation.

68 6.2 Readouts from posterior distributions

6.2. Readouts from posterior distributions
You’re working on a dataset. You’ve invented a probability model to describe the data,
with some unknown parameters that are crucial to your company’s business. With just a
few qualms you invent a reasonable prior distribution for the parameters, and you write
code to sample from the posterior distribution.
Your boss excitedly and asks you “So, what values did you find for these parameters?”
“That’s a category error” you reply sanctimoniously. “As a Bayesian, I consider param-
eters to be random variables. They are described with probability distributions. We can’t
pick out a single value to describe an entire distribution.”
“Tell me a value, or you’re fired,” your boss says.

There are several standard summaries that Bayesians can report, to describe their posterior distribu-
tions. Suppose we’re interested in the posterior distribution (Θ | data), and either we’ve calculated
this distribution with maths, or we’ve taken the computational approach and we have a collection of
sample values θ_samp together with associated posterior weights w.

POSTERIOR POINT ESTIMATES *

If we really truly have to report a single value, here are some choices. If Θ is a simple R-valued
random variable, we could just report its mean or median. The posterior mean is

posterior mean = E(Θ | data) ≈ numpy.sum(θ_samp * w)

The posterior median is

posterior median = θ̂ such that P(Θ ≤ θ̂) = 0.5.

1 i = numpy. argsort (θ_samp)
2 θ_samp,w = θ_samp[i] , w[i] # sort so θ is ascending
3 F = numpy.cumsum(w) # cumulative distribution
4 post_median = θ_samp[F<=0.5][−1] # pick largest θ such that F ≤ 0.5

Another choice is to report the most likely θ. This is called the maximum a posteriori (MAP) estimate—
a fancy name to give this estimate the facade of rigour.

MAP estimate = arg max
θ

PrΘ(θ | data) ≈ θ_samp[numpy.argmax(w)]

In some problems there is a natural loss function L(ϕ, θ), which measures the price you pay
if you report estimate ϕ and the true value is θ. Then you should report θ̂ to minimize the expected
posterior loss,

θ̂ = arg min
ϕ

E
(
L(ϕ,Θ) | data

)
.

The expectation here is over values of Θ. How we implement this will depend on the problem—
whether θ discrete or continuous, etc.

POSTERIOR CONFIDENCE INTERVALS

A 95% confidence interval for a random variable Y is an interval [lo, hi] such that P(Y ∈ [lo, hi]) =
0.95. A good way to express our uncertainty about the unknown parameter is by giving a confidence
interval for it, also called a posterior confidence interval: report an interval [lo, hi] such that

P
(
Θ ∈ [lo, hi]

∣∣ data
)
= 0.95.

A common choice is to pick it so that

P(Θ < lo) = 0.025 and P(Θ > hi) = 0.025

though other choices are just as legitimate, for example the one-sided confidence interval [−∞, hi]
with hi chosen so that P(Θ > hi) = 0.05. Computationally, if we have a collection of sample values
θ_samp with weights w,

6.2 Readouts from posterior distributions 69

1 i = numpy. argsort (θ_samp)
2 θ_samp, w = θ_samp[i] , w[i]
3 F = numpy.cumsum(w)
4 (lo , hi) = (θ_samp[F<0.025][−1], θ_samp[F>0.975][0])

POSTERIOR PREDICTIVE PROBABIL ITY *

When we’re making inferences about an unknown parameter, only rarely do we actually care about
the parameter itself—the parameter and indeed the entire probability model are fictions inside a data
scientist’s head. Rather, we want to make predictions about outcomes of future experiments.

For example: suppose we have a biased coin with unknown probability of heads θ, and we want
to estimate the probability that the next two coin tosses will be heads, which is θ2. We don’t know
θ, so we can’t give an actual number for this probability. But suppose that from earlier experiments
we’ve concluded that with probability 80% the coin is fair (θ = 1/2), and with probability 20% the
coin has heads on both sides (θ = 1). Then a reasonable estimate for the probability of interest would
be 0.8× (1/2)2 + 0.2× 12 = 0.4.

More generally, suppose we want to estimate the probability of some future eventA, and that this
probability depends on one or more unknown parameters; let’s give this function a name, P(A | θ) =
h(θ). As Bayesians we are representing our uncertainty about θ by treating it as a random variable
(Θ | data). So a reasonable estimate for the probability of A is the mean value of h applied to this
random variable. We call this the posterior predictive probability of A. This whole process is written
rather tersely as

post.pred.prob.(A) = E
[
h(Θ)

∣∣ data
]
≡ E

[
P(A |Θ)

∣∣ data
]

Computationally it’s easy to approximate, assuming we’ve managed to implement a function for h:

post.pred.prob(A) ≈ numpy.sum
(
h(θ_samp) * w

)
.

Mathematically, if we have formulae for h(θ) and for the posterior density PrΘ(θ |data), we can (if the
calculus gods are friendly) calculate the posterior predictive probability by writing out the expectation
as an integral:

post.pred.prob(A) = E(h(Θ) | data) =
∫
θ

h(θ)PrΘ(θ | data) dθ.

Example 6.5. Suppose we have a biased coin, with unknown bias θ, and we’ve found a posterior
distribution for this parameter using exercise 6.1. Find the predictive probability that the next
two coin tosses will be heads.

The event {next two coin tosses are heads} has probability θ2. Exercise 6.1 gave us a sample of
θ_samp together with posterior weights w. So the posterior predicitive probability that the next two
coin tosses are heads is

numpy.sum
(
(θ_samp ** 2) * w

)
.

70 6.3 Bayesian model selection *

6.3. Bayesian model selection *
Your PhD supervisor has achieved eminence for the data she has collected and the proba-
bility model she has formulated to describe that data. A competing lab has just published
a different model. Your supervisor asks you to figure which of the two models is a better
fit for the data.
“That’s a meaningless question” you reply sanctimoniously. “Speaking as a Bayesian,
‘which model is better?’ is uncertain, therefore like any other uncertainty it should be
represented as a random variable. I can find a posterior distribution, if you tell me the
prior.”
“Just tell me which is better,” your supervisor says. “You’ll never make a scientific career
if you can’t draw conclusions.”

A true Bayesian won’t draw a conclusion about which model is better. But there is a nice way to write
down the posterior distribution for the ‘which model is better?’ random variable, which is nearly as
good.

Let the two models be A and B, and let m ∈ {A,B} denote which of the two models is correct.
Treat this as a random variable: let PrM (A) be the prior probability that A is correct, and PrM (B) =
1− PrM (A) be the prior probability that B is correct.

The two models may have unknown parameters. Write θ for the unknown parameters in model
A, and ϕ for the unknown parameters in B, and assume we have set down prior distributions for them.

The first step of applying Bayes’s rule is to write out the prior distribution. There are three un-
knowns here, M , Θ, and Φ, so we have to specify a prior joint distribution. We’ll take an independent
prior,

Pr(m, θ, ϕ) = PrM (m)PrΘ(θ)PrΦ(ϕ).
The second step is to write out the data density. Each of the two probability models, A andB, proposes
its own data density,

PrAX(x | θ) and PrBX(x | ϕ).
Let’s combine these into one formula by

PrX(x | θ, ϕ,m) =

{
PrAX(x | θ) if m = A
PrBX(x | ϕ) if m = B.

Now we can apply Bayes’s rule:

PrM,Θ,Φ(m, θ, ϕ |X = x) = κPrM (m)PrΘ(θ)PrΦ(ϕ)PrX(x | θ, ϕ,m).

If we’re trying to decide which model is better, we care about the posterior distribution of M , and Θ
and Φ are nuisance parameters. So let’s marginalize them out:

PrM (m |X = x) =

∫
θ,ϕ

PrM,Θ,Φ(m, θ, ϕ |X = x) dθ dϕ

The random variable M takes only two values, A or B, so let’s write out PrM (m |X = x) explicitly
for these two cases:

PrM (A |X = x) =

∫
θ,ϕ

κPrM (A)PrΘ(θ)PrΦ(ϕ)PrA(x | θ) dθdϕ

= κPrM (A)

∫
θ

PrΘ(θ)PrA(x | θ) dθ

= κPrM (A) ev(A |X = x)

PrM (B |X = x) =

∫
θ,ϕ

κPrM (B)PrΘ(θ)PrΦ(ϕ)PrB(x | θ) dθdϕ

= κPrM (B)
∫
ϕ

PrΦ(ϕ)PrB(x | ϕ) dϕ

= κPrM (B) ev(B |X = x)

The quantity ev(m | X = x) is called the evidence for model m, and it’s defined by these integrals
above. We can find κ using the “densitites sum to one” rule, summing over two values, PrM (A |X =
x) + PrM (B |X = x) = 1. This gives

PrM (A |X = x) =
PrM (A) ev(A |X = x)

PrM (A) ev(A |X = x) + PrM (B) ev(B |X = x)

6.3 Bayesian model selection * 71

and similarly for PrM (B). In words, we start with a prior belief PrM (m) about which model is correct,
and we update that belief in the light of the data, according to the evidence for each model. Evidence
is a scale factor, used to reweight your prior belief about which model is correct. Don’t try too hard
to interpret the absolute value of evidence.

The true Bayesian would never say “Use Model A rather than Model B”, they would only say
“In the light of the data, and given prior beliefs, here are the updated weights to use for each of the
models.” Their predictions about new observations would be based on posterior predictive probability,

see page 69 for Bayesian
posterior predictive
probability

averaging over all unknown parameters including M . This is called Bayesian model averaging.

∗ ∗ ∗

Model selection includes choosing which prior to use. Bayesian methods can’t help: strict Bayesian-
ism insists that we invent a prior before we even look at the data. We can weasel out by declaring the
parameters of the prior distribution to be hyperparameters, which is a fancy way of saying “parameter
that I have no prior for”, and use non-Bayesian model selection such as cross-validation to pick values
for them.

Brian Ripley, an eminent data scientist, says “I think Bayesians are rarely Bayesian in their
model choices”19.

19Brian Ripley. Selecting amongst large classes of models. Lecture for a symposium in honour of John Nelder’s 80th birthday,
Imperial College. Mar. 2004. URL: http://www.stats.ox.ac.uk/~ripley/Nelder80.pdf.

http://www.stats.ox.ac.uk/~ripley/Nelder80.pdf

	I Learning with probability models
	Specifying and fitting models
	Maximum likelihood estimation
	Numerical optimization
	Random variables in code
	Standard random variables
	Equal values or identical distributions?

	Random variables in maths
	Rules for random variables
	Finding distributions

	Learning generative models
	Supervised learning
	Supervised learning and prediction loss *

	Feature spaces / linear regression
	Fitting a linear model
	Features
	One-hot coding
	Non-linear response
	Periodic patterns
	Discovering features
	Secular trend

	Linear mathematics
	Linear regression and least squares
	Confounded features
	Gauss's invention of least squares *

	II Handling probability models
	Simulations and calculations
	Monte Carlo integration
	Probability densities sum to one
	Numerical random variables
	Random tuples
	Conditional random variables
	Bayes's rule for random variables
	applied using mathematics
	applied using importance sampling

	Applications *
	Importance sampling *
	Application: ray tracing *

	Empirical methods
	The empirical cumulative distribution function
	The empirical distribution
	Goodness of fit and KL divergence *

	III Inference
	Bayesianism
	Finding the posterior distributions
	using computation
	using maths

	Readouts from posterior distributions
	Bayesian model selection *

	Frequentism with resampling
	Resampled confidence intervals
	Confidence intervals for parameter estimates
	Confidence intervals for arbitrary readouts

	A/B testing
	Hypothesis testing and p-values
	Cross validation and perplexity *

	Further topics
	To explain or to predict?
	Model selection
	Platonic frequentism
	Bootstrap resampling
	Confidence intervals for scientists versus business analysts
	Interpretation
	Classic analysis

	IV Advanced probability modelling
	Random processes
	Markov chains and memorylessness
	Calculations based on memorylessness
	Application: double-spend in bitcoin *
	Inference with Markov chains *
	Limit theorems and equilibrium
	Stationary behaviour and irreducibility
	Detailed balance
	Ergodic theorem
	Limiting behaviour and aperiodicity

	Gibbs sampling

	Expectation, CLT
	Mean and variance
	A rule of thumb for confidence intervals
	Conditioning on a random variable
	Convergence theorems
	Accurancy of Monte Carlo
	How accurate is Monte Carlo integration?
	Empirical distribution true distribution
	Importance sampling

	Appendix
	Appendix
	Standard random variables
	Python library commands
	List of common random variables

	Abstract linear mathematics
	Definitions and useful properties
	Orthogonal projection and least squares
	Advanced application: Fourier analysis *

