
IB Foundations of Data Science
Damon Wischik, Computer Science, Cambridge University

Contents

I Learning with probability models 1

1 Specifying and fitting models 2
1.1 Maximum likelihood estimation . 2
1.2 Numerical optimization . 5
1.3 Random variables in code . 7
1.4 Random variables in maths . 9

1.4.1 Standard random variables . 10
1.4.2 Specifying numerical random variables . 11
1.4.3 Independence . 12

1.5 Learning generative models . 13
1.6 Supervised learning . 16
1.7 Supervised learning and prediction loss * . 20

2 Feature spaces / linear regression 21
2.1 Fitting a linear model . 22
2.2 Features . 24

2.2.1 One-hot coding . 24
2.2.2 Non-linear response . 25
2.2.3 Periodic patterns . 25
2.2.4 Discovering features . 26

2.3 Linear mathematics . 30
2.4 Linear regression and least squares . 31
2.5 Confounded features . 32
2.6 Gauss’s invention of least squares * . 35

II Handling probability models 37

3 Simulations and calculations 37
3.1 Monte Carlo integration . 38
3.2 Probability densities sum to one . 40
3.3 Handling numerical random variables * . 41
3.4 Random tuples . 43
3.5 Conditional random variables . 48
3.6 Bayes’s rule for random variables . 50

3.6.1 applied using mathematics . 51
3.6.2 applied using weighted Monte Carlo . 51

4 Empirical methods 53
4.1 The empirical cumulative distribution function . 54
4.2 The empirical distribution . 56
4.3 Goodness of fit and KL divergence * . 58

ii CONTENTS

III Inference

IV Advanced probability modelling

Appendix 59

A Standard random variables 60
A.1 Python library commands . 60
A.2 List of common random variables . 61

B Abstract linear mathematics 64
B.1 Definitions and useful properties . 64
B.2 Orthogonal projection and least squares . 67
B.3 Advanced application: Fourier analysis * . 69

ACKNOWLEDGEMENTS

Thanks to Richard Gibbens, Jakub Perlin, Thomas Sauerwald, Alicja Chaszczewicz, and L.A. Mlodzian
for spotting bugs in earlier versions of these notes.

October 10, 2019 at 16:58:00

1

Part I
Learning with probability models
Many tools in machine learning come down, in the end, to writing out a probability model, and then
estimating the model’s parameters by using data. This is called fitting the model.

The most straightforward type of estimation is called maximum likelihood estimation, and it
can be computed numerically using gradient descent. Andrej Karpathy, director of AI and vision at
Tesla, writes1 that “Gradient descent can write code better than you. I’m sorry.” He elaborates

Software 1.0 is code we write. Software 2.0 is code written by the optimization based
on an evaluation criterion (such as “classify this training data correctly”). It’s likely
that any setting where the program is not obvious but one can repeatedly evaluate the
perforamce of it (e.g. – did you classify some images correctly? do you win games of
Go?) will be subject to this transition, because the optimization can find much better
code than what a human can write.

Section 1 introduces maximum likelihood estimation and simple numerical optimization, and shows
them applied first to basic probability models, then to more advanced probability models for unsuper-
vised learning (Gaussian mixture models in section 1.5) and supervised learning (image classification
in section 1.6).

A large part of this course, and of machine learning in general, is knowing enough building
blocks to come up with useful probability models. The building blocks are random variables, which we
look at from a programming perspective in section 1.3 and a mathematical perspective in section 1.4.

Section 2 goes into depth on one particular class of probability models, namely linear regression.
They are flexible and interpretable, and have fast implementations of maximum likelihood estimation.
They should be your go-to models for all sorts of data science and machine learning problems, the
second thing you try to get a sense of the data you’re working with. (The first thing you try should be
simple tabulation!)

1985 1990 1995 2000 2005 2010 2015 2020 2025

0

10

20
Monthly average temperatures [°C] at Cambridge station

We’ll use linear models to analyse whether temperatures are increasing in Cambridge. This plot
shows a fitted model assuming stable temperatures (the grey line), and actual observations (blue and
red points, according to whether they are below or above the fitted line).

1Andrej Karpathy. Software 2.0. Blog. Nov. 11, 2017. URL: https://medium.com/@karpathy/software- 2- 0-
a64152b37c35 (visited on 11/07/2018).

https://medium.com/@karpathy/software-2-0-a64152b37c35
https://medium.com/@karpathy/software-2-0-a64152b37c35

2

1. Specifying and fitting models
1.1. Maximum likelihood estimation

tl;dr. Assume we have observed data, and we’re told the probability model behind the data. As-
sume also that this probability model has an unknown parameter, which we wish to estimate.
The likelihood is the probability of the observed data, viewed as a function of the unknown
parameter. The maximum likelihood estimator, or mle, is the parameter value that maximizes the
likelihood.

Here are some worked example of maximum likelihood parameter estimation for very simple proba-
bility models, so simple that we can find the maximum likelihood estimate using basic calculus and
we don’t need a computer.

Exercise 1.1 (Coin tosses).
Suppose we take a biased coin, and tossed it n = 10 times, and observe x = 6 heads. Let’s use
the probability model

P(num. heads = x) =

(
n

x

)
px(1− p)n−x, x ∈ {0, 1, . . . , n}.

where p is the probability of heads and 1− p is the probability of tails. What is p?
(n
x

)
is the binomial

coefficient, equal to
n! / x!(n − x)!

The likelihood is the probability of the observed data x = 6, viewed as a function of the unknown
parameter p: it is

lik(p) =
(
n

x

)
px(1− p)n−x.

A sensible estimate for p is the mle, i.e. the value of p that maximizes the likelihood. To find it, solve

d

dp
lik(p) =

(
n

x

)(
xpx−1(1− p)n−x − (n− x)px(1− p)n−x−1

)
= 0

which has the solution
p̂ =

x

n
.

It’s often easier to maximize log(lik(·)) rather than lik(·): it must give us the same solution, because
log is an increasing function. In this case,

log lik(p) = κ+ x log p+ (n− x) log(1− p)

where κ =
(
n
x

)
. Note that κ doesn’t depend on p—so as far as likelihood is concerned, κ is a constant.

When we solve
d

dp
log lik(p) =

x

p
− n− x

1− p
= 0

we also get the solution p̂ = x/n.

Exercise 1.2 (The plug‐in principle).
In the coin toss example, estimate the odds of heads, i.e. estimate p/(1− p).

Write h for the odds of heads, h = p/(1− p). One way to estimate h is by rewriting the entire model
in terms of h, via the substitution p = h/(1 + h):

lik(h) =
(
n

x

)(h

1 + h

)x(1

1 + h

)n−x

.

When we maximize this, we find the mle is ĥ = x/(n− x).

1.1 Maximum likelihood estimation 3

There is a simpler way to find the mle for h. We’ve already found the mle for p, p̂ = x/n. We
can just plug this in to the formula for h, to get the mle for h:

ĥ =
p̂

1− p̂
=

x/n

1− x/n
=

x

n− x
.

This so-called plug-in method is derived from the chain rule in calculus. It means that no matter how
we happen to have parameterized the model, we’ll draw the same conclusions.

Exercise 1.3 (Estimating multiple parameters).
Suppose we ask n = 100 people their views on Brexit, and 37 say Leave, 35 say Remain, and
the other 28 don’t care. Using the probability model

P
(
leavers = xL, remainers = xR

)
=

n!

xL!xR!(n− xL − xR)!
pxL

L pxR

R (1− pL − pR)
n−xL−xR

estimate the parameters pL and pR.

The log likelihood is

log lik(pL, pR) = κ+ xL log pL + xR log pR + (n− xL − xR) log(1− pL − pR).

This is a function of two variables. To find the maximum, we need to solve two equations simultane-
ously:

∂

∂pL
log lik(pL, pR) = 0 and

∂

∂pR
log lik(pL, pR) = 0.

Doing the differentiation,

xL

p̂L
− n− xL − xR

1− p̂L − p̂R
= 0 and

xR

p̂R
− n− xL − xR

1− p̂L − p̂R
= 0

which after some algebra gives

p̂L =
xL

n
and p̂R =

xR

n
.

THINGS TO WATCH OUT FOR

It’s common to write P(num. heads = x | p) or lik(p | x) to emphasize that the formula involves both
the unknown parameter p and the observed data x. Note that this is NOT a conditional probability, it
just happens to use the same vertical bar symbol.

What’s the difference between p and p̂? We denote by p the unknown parameter, and we denote
by p̂ the estimate we found for p from the data. Think of the ^as a mountain top, reminding us that we
found a maximum!

Another word for p̂ is estimator. This emphasizes that p̂ is a function, which takes the observed
data as its input and returns an estimated value as its output. When you derive an estimator, scan
through your formula and double-check that it doesn’t have any unknown parameters. For example,
suppose we had tried to solve exercise 1.3 by considering only one of the parameters, e.g. by differ-
entiating log lik(pL, pR) with respect to pL and finding where the derivative is zero; we’d have ended
up with the answer

p̂L =
(
1− pR

) xL

n− xR
.

This is NOT a valid estimator for pL because the right hand side depends on an unknown parameter
pR.

∗ ∗ ∗

Why did we take the observed data to be x = 6, rather than the pair (x, n) = (6, 10)? In general, we
take the observed data to be whatever might be different if we reran the experiment. We’ve chosen to
interpret the problem as though the experimenter decided on n = 10 in advance, and then tossed the

4 1.1 Maximum likelihood estimation

coin, and happened to see x = 6, i.e. as though x is the observed data and n = 10 is a fixed parameter.
This is what the equation says. But other interpretations of the text are possible—for example, perhaps
the experimenter kept tossing coins until she saw x = 6 heads, and the observed data is n, the number
of tosses needed.

What does likelihood actually measure? In part 4.3 we’ll explore some of the paths that statis-
ticians and philosophers have taken in thinking about likelihood and what it can be used for. Here are
two remarks, to start you thinking.

• The maximum likelihood procedure is intuitively sensible, but what guarantees do we have
about its accuracy? If I toss 3 coins and get 3 heads, the maximum likelihood estimator is
p = 1. If I toss 1 million coins and get 1 million heads, it’s still 1. I should be more confident
in the latter case, but how do we measure confidence? And what would it take to persuade me
I’ll never see a tail?

• The likelihood is NOT a probability density. Probability density functions must integrate to 1,
but in this example

∫ 1

0
lik(p) dp is equal to 1/(1 + n). If it’s not a probability density, what is

it?

1.2 Numerical optimization 5

1.2. Numerical optimization
The workhorse of machine learning is numerical optimization, especially the algorithm known as
gradient descent. There is much advice to be found about numerical optimization algorithms, but
not much that sheds light on the concepts behind data science and machine learning, so we won’t say
much here. We will simply give a simple general-purpose routine that will be adequate for most of
this course.

Because numerical optimization is so important, there are many specialized algorithms. For any
useful branch of machine learning, chances are there’s some specialized library for efficient numerical
optimization within that branch. The practical handout introduces Keras, commonly used in deep
learning.

tl;dr.

1 import scipy . optimize
2
3 # The function to minimize. Input x is a length-K vector, output is a real number
4 def f (x) :
5 return
6
7 x0 = [. . .] # where to start the search, a length-K vector
8 x̂ = scipy . optimize . fmin(f , x0)

The optimization routine isn’t omniscient. It will find a local minimum, not necessarily a global
minimum. It might fail to find even a local minimum, if the function isn’t well-behaved. To make
it happy, pick a sensible x0, based on your understanding of roughly what the answer is likely to
be.

To find a local minimum over a constrained domain, it’s best to transform parameters into an uncon-
strained domain. For example,

• Instead of minimizing over x > 0, minimize over y ∈ R and let x = ey

• Instead of minimizing over x ∈ [0, 1], minimize over y ∈ R and let x = ey/(1 + ey)

• Instead of minimizing over (x, y, z) ∈ R3 such that x+y+z = 1, minimize over (x, y) ∈ R2

and set z = 1− x− y.

If these tricks don’t work, then you need a specialist optimizer.

Exercise 1.4. Find the maximum over σ > 0 of

f(σ) =
1√
2πσ2

e−3/2σ2

1 import scipy . optimize
2 import numpy
3 import matplotlib . pyplot as plt
4
5 #I implement f using numpy maths functions, so that it’s automatically vectorized, handy for plotting
6 def f (σ) :
7 return numpy. exp(−3∗0.5/numpy.power(σ ,2)) / numpy. sqrt(2∗numpy. pi∗numpy.power(σ ,2))
8
9 # From the plot, the maximum is somewhere around σ = 2

10 f ig , ax = plt . subplots ()
11 σ = numpy. linspace (0 ,10 ,100)[1:] # function doesn’t work at σ = 0

12 ax . plot (σ , f (σ))
13 plt .show()

6 1.2 Numerical optimization

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

14 # Optimize in terms of τ = logσ, τ ∈ R
15 # We want to maximize f, i.e. minimize -f
16 # fmin returns a list of length 1; unpack it with (τ̂ ,)=...
17 (τ̂ ,) = scipy . optimize . fmin(lambda τ : −f (numpy. exp(τ)) , numpy. log (2))
18 σ̂ = numpy. exp(τ̂)

Exercise 1.5 (Softmax transformation).
Find the maximum of

f(x1, x2, x3) = 0.2 logx1 + 0.5 logx2 + 0.3 logx3

over x1, x2, x3 ∈ [0, 1] such that x1 + x2 + x3 = 1.

Let’s optimize over (ξ1, ξ2) ∈ R2, with the transform

x1 =
eξ1

eξ1 + eξ2 + 1
, x2 =

eξ2

eξ1 + eξ2 + 1
, x3 =

e1

eξ1 + eξ2 + 1
.

For any (ξ1, ξ2) ∈ R2, this will produce a probability vector (x1, x2, x3), i.e. values in [0, 1] that sum
to 1. This is a version of the so-called softmax transform, widely used in machine learning whenever
we want a neural network to output probabilities.

1 def f (ξ) : # input: a vector of length 2
2 ξ1 ,ξ2 = ξ
3 x = numpy. exp([ξ1 ,ξ2 ,1])
4 x1 ,x2 ,x3 = x / numpy.sum(x)
5 return 0.2∗numpy. log(x1) + 0.5∗numpy. log(x2) + 0.3∗numpy. log(x3)
6
7 # Initial guess (ξ1, ξ2) = 0, i.e. (x1, x2, x3) = (1/3, 1/3, 1/3)

8 ξ1 ,ξ2 = scipy . optimize . fmin(lambda ξ : −f (ξ) , [0 ,0])
9 x = numpy. exp([ξ1 ,ξ2 ,1])
10 x / numpy.sum(x)

1.3 Random variables in code 7

1.3. Random variables in code

tl;dr. A random variable is a function that can give different answers, e.g. a function that calls
a random number generator. There are no restrictions on the return type of the function, but for
most of the models we study it will be either integer or real.
We can specify a random variable either with source code, or by giving its probability distribution,
i.e. by giving the value of

P(X ∈ A) for every set A.

Two random variables X and Y are said to be independent if

P(X ∈ A and Y ∈ B) = P(X ∈ A) P(Y ∈ B) for all A and B.

Informally, it means “knowing the value of one gives no information about the other.”
Two random variables X and Y are said to be identically distributed, written X ∼ Y , if they
have the same probability distribution.

To explain the notation for random variables, we’ll be working in this section with standard uniform
random variables in the range [0,1], generated in Python by random.random(), and referred to math-
ematically as U [0, 1]. The next section discusses several other more interesting random variables.

When we write a maths expression like X ∼ U [0, 1] we mean “generate X by calling ran-
dom.random()”. Another way of saying this is “X is drawn from the U [0, 1] distribution.”

It’s common to use a hybrid maths / code notation to indicate transformations and combinations
of random variables. For example, if we see the maths

X ∼ U [0, 1], Y = aX + b

it tells us to generate Y like this:

1 def ry (a ,b) :
2 x = random.random()
3 y = a ∗ x + b
4 return y

In maths expressions we often use capital letters to denote random variables and lower case for con-
stants. This is how we can tell from the maths that X and Y denote random variables while a and
b denote constants, which we might as well pass in as parameters. It’s good practice to state this
explicitly, for example “Let Y = aX + b, where a and b are parameters.”

Remember that a random variable doesn’t have any particular value, it’s a mechanism for gener-
ating values. This is clear enough when it’s written as a function like ry. But also, if we’re discussing
a naked script e.g.

5 x = ry (2 , 3)

then (from the point of view of the person running the script) x is a random variable because it gets a
different value every time the script is called.

INDEPEDENT RANDOM VARIABLES

When a maths expression involving two or more random variables, then the way it is written tells you
whether they are meant to be generated independently. If we see the maths

X1 ∼ U [0, 1] , X2 ∼ U [0, 1] , Y = X1 logX2

or
X1 , X2 ∼ U [0, 1] , Y = X1 logX2

it tells us to generate them independently:

1 def ry () :
2 x1 = random.random()

8 1.3 Random variables in code

3 x2 = random.random()
4 return x1 ∗ math. log(x2)

If we see the maths
X ∼ U [0, 1] , Y = X logX

it tells us to use the same X value twice:

1 def ry () :
2 x = random.random()
3 return x ∗ math. log(x)

Conversely, if the code makes multiple calls to a random number generator, e.g.

1 (x1 , x2) = [random.random() for _ in range(2)]

it’s telling us that X1 and X2 are independent.

EQUAL VALUES OR IDENTICAL DISTRIBUTIONS?

We use a special symbol ∼, as in X ∼ Y , to denote that the two random variables have identical
distributions. This is different from writing X = Y , which denotes that they are equal in value.

1 # Generate two indepedent random variables X,Y ∼ U [0, 1].
2 # They are identically distributed, because they are generated in the same way.
3 x = random.random()
4 y = random.random()
5
6 # Are they equal in value? No, of course not, they almost always have different values.
7 assert x != y

Two random variables might be identically distributed, even if they come from different source code.
Here’s an example:

Example 1.6 (Equality of distributions).
Here are two different random variables:

1 def rgeom(p) :
2 x = 1
3 while random.random() > p :
4 x = x + 1
5 return x
6
7 def rgeom2(p) :
8 def rexp(λ) :
9 u = random.random()
10 return − math. log(u) / λ
11 λ =− math. log(1−p)
12 z = rexp(λ)
13 return math. ce i l (z)

It can be shown that

P
(
rgeom(p) = k

)
= P

(
rgeom2(p) = k

)
= (1− p)k−1p.

Hence the two random variables are identically distributed.

The maths for this example is left to section 3.3, which includes many other examples and techniques
Probability calculations
in exercise 3.5 page 42 for calculating probabilities.

1.4 Random variables in maths 9

1.4. Random variables in maths

tl;dr. A random variable is a function that can give different answers. We say that a random
variable takes values in S, or equivalently that it is S-valued, if the return value of the function
is an element of the set S.
Numerical random variables (i.e. that return an integer or real) are so useful that we often write
‘random variable’ to mean ‘numerical random variable’, and use other wording when it’s not
numerical. The most common building blocks for probability models are

• discrete random variables, taking integer values;
• continuous random variables, taking real values.

A continuous random variable is specified by its density function, while a discrete random vari-
able is specified by its probability mass function. We use the same notation, Pr(x), for both
cases.
Two random variables X and Y are independent if their joint density PrX,Y (x, y) satisfies

PrX,Y (x, y) = PrX(x)PrY (y).

This extends to collections of random variables: (X1, . . . , Xn) are independent if

Pr(x1, . . . , xn) = PrX1(x1)× · · · × PrXn(xn).

A collection of independent random variables is called a random sample. If all the Xi are drawn
from the same distribution, it’s called an independent identically-distributed or i.i.d. random
sample.

The goal of this section is to introduce the mathematical notation used for describing random variables,
especially Pr(·) and random samples. This is all that’s needed for basic model fitting, as described in
the next two sections. Most tools from machine learning and statistics are oriented around random
samples, and Pr(·) is a fundamental quantity for nearly all learning methods.

To design more advanced probability models, and for Bayesian learning, we’ll need some more
advanced tools for manipulating random variables. This is left to section 3.

10 1.4 Random variables in maths

1.4.1. STANDARD RANDOM VARIABLES

As a data scientist you should be familiar with a repertoire of standard random variables. Many of the
standard random variables take one or more parameters. For example, let X be the number of heads
seen from n tosses of a biased coin, for which the probability of heads is p. This is called the Binomial
distribution, written X ∼ Bin(n, p). In Python, numpy.random.binomial(n,p).

Here are some of the standard random variables that you will use over and over again. There’s
a longer list in the appendix, including Python calls.

Common random
variables: appendix,
page 60 DISCRETE RANDOM VARIABLES

Uniform X ∼ U{a, . . . , b} An integer, uniformly distributed in {a, . . . , b}.
Geometric X ∼ Geom(p) Counts the number of failures before a success,

where success happens with probability p
Binomial X ∼ Bin(n, p) Counts the number of heads in n tosses of a

biased coin, where p is the probability of heads
Poisson X ∼ Pois(λ) Used for modelling counts such as the number of

buses that arrive in an interval of time.
CONTINUOUS RANDOM VARIABLES

Uniform X ∼ U [a, b] A floating point value, uniformly distributed in
the interval [a, b].

Exponential X ∼ Exp(λ) Used for modelling lifetimes, e.g. the time until
the next bus arrives.

Normal / Gaussian X ∼ N(µ, σ2) Used to model magnitudes, e.g. the height of a
person.

Beta X ∼ Beta(a, b) Arises in Bayesian inference.

Looking up random variables. The first place to look up a random variable is Wikipedia. Below are
two examples, the entries for the Poisson distribution and the Normal distribution. Some terminology:
“support” means “X takes values in ...”; PMF is the probability mass function and PDF is the proba-
bility density function, both of which we’re writing as PrX(·); and CDF is the cumulative distribution
function P(X ≤ ·).

The second place to look up a random variable is the documentation for numpy.random, which
has routines for sampling from random variables, and for scipy.stats, which has routines for densities
and cumulative distribution functions among others.

Poisson distribution Normal distribution
Notation Pois(λ) Notation N(µ, σ2)

Parameters λ > 0 (rate) Parameters mean µ ∈ R,
scale σ > 0

Support k ∈ {0, 1, . . . } Support x ∈ R

PMF λke−λ

k!
PDF 1√

2πσ2
e−(x−µ)2/2σ2

CDF e−λ

⌊k⌋∑
i=0

λi

i!
CDF Φ

(x− µ

σ

)
Mean λ Mean µ

Variance λ Variance σ2

The Normal distribution The Normal distribution is so widely used in data science and machine
learning that it’s worth mentioning some extra properties here.

• If X ∼ Normal(µ, σ2) and a and b are constants, then aX + b ∼ Normal(aµ + b, a2σ2).
Section 3.3 page 41 describes tools for reasoning about this and other transformations of a
random variable.

• An engineer’s rule of thumb: an arbitrary random variable can be approximated reasonably
well by a Normal. This is so useful and simple that it can’t possibly always be true—but what’s
remarkable is that it’s often nearly true. In Part III we’ll see the Central Limit Theorem, which
is circumstantial evidence for the rule of thumb.

https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://docs.scipy.org/doc/numpy/reference/random/generator.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html

1.4 Random variables in maths 11

1.4.2. SPECIFYING NUMERICAL RANDOM VARIABLES

Any random variable can be specified by giving its probability distribution, i.e. by giving the value
of

P(X ∈ A)

for every set A ⊆ S . Numerical random variables (either continuous or discrete and integer-valued)
can alternatively be specified by giving the cumulative distribution function, often shortened to distri-
bution function or even distribution,

F (x) = P(X ≤ x).

If X is a discrete random variable (assumed to take integer values, unless we explicitly say otherwise),
then

F (x) = P(X ≤ x) =

x∑
y=−∞

P(X = y)

and F is a step function, increasing at every y where P(X = y) > 0.

If on the other hand F (x) is differentiable, then X is said to be a continuous random variable. Its
density function is defined to be f(x) = F ′(x), and

F (x) = P(X ≤ x) =

∫ x

y=−∞
f(y) dy .

For a continuous random variable, P(X = x) = 0 for every x, and so these four expressions are all
equal:

P(a ≤ X ≤ b)

P(a < X ≤ b)

P(a ≤ X < b)

P(a < X < b)

 =

∫ b

x=a

f(x) dx .

Unified density notation. In this course we’ll write PrX(x), and refer to it as “density”, for both
discrete and continuous random variables:

PrX(x) =

P(X = x) when X is a discrete random variable

(PrX is called the probability mass function)

f(x) when X is a continuous random variable with density f
(PrX is called the probability density function)

For both discrete and continuous random variables, for any2 set A,

P(X ∈ A) =

{∑
x∈A PrX(x) if X is discrete∫

x∈A
PrX(x) dx if X is continuous.

Many results in data science and machine learning apply to both discrete and continuous random
variables, but with slightly different meanings, and this notation helps us write formulae that work for
both cases (and we’ll typically only write one version of the formula, and say “use sums or integrals
as appropriate”).

2Any reasonable set A. For a discrete random variable, A should be a set of integers. For a continuous random variable,
A should be a finite collection of open or closed intervals. If we let A be the set of all rational numbers, for example, then
integration is problematic!

12 1.4 Random variables in maths

1.4.3. INDEPENDENCE

Discrete. For a pair of discrete random variables X and Y , their joint density is

PrX,Y (x, y) = P(X = x and Y = y).

In section 1.3 we gave a definition of independence in terms of the joint distribution: we said X and
Y are independent if

P(X ∈ A and Y ∈ B) = P(X ∈ A)P(Y ∈ B) for all A and B.

It’s not hard to show that

X,Y independent ⇐⇒ PrX,Y (x, y) = PrX(x)PrY (y).

The ⇒ direction is trivial, and the ⇐ direction isn’t hard.

Continuous. For continuous random variables X and Y , or when one is discrete and the other con-
tinuous, it’s trickier to define the joint density. A formal definition is left to section 3.4. The set-based
definition from section 1.3 is the technically correct way to define independence, but for most practical
purposes it’s best to use the density-based formula, PrX,Y (x, y) = PrX(x)PrY (y).

Random samples. A collection of random variables (X1, . . . , Xn) are independent if

Pr(x1, . . . , xn) = PrX1(x1)× · · · × PrXn(xn).

This is especially useful when we’re using maximum likelihood estimation to estimate an unknown
parameter, and our dataset is a random sample, as we’ll see in the next section.

1.5 Learning generative models 13

1.5. Learning generative models
*** TODO: diagram

tl;dr. In generative modelling, we have a dataset x1, . . . , xn, and we want to find a distribution
that might have generated it.

1. First, choose a distribution with one or more tunable parameters. Call the corresponding
random variable X , and write its distribution as PrX(x |θ) where θ is the parameter (which
may be a real number, an integer, or a tuple). We want to view the dataset x1, . . . , xn as
independent samples generated from X .

2. Next, write out the likelihood of θ given the dataset. This is just the probability of observing
the dataset, which by independence is

lik(θ | x1, . . . , xn) = PrX(x1 | θ)× · · · × PrX(xn | θ).

3. Estimate θ using maximum likelihood estimation, i.e. by solving

θ̂ = arg max
θ

log lik(θ | x1, . . . , xn).

This is called fitting the model.

In machine learning, there are many tools for finding patterns in a dataset that doesn’t have pre-existing
labels; these tools come under the heading “unsupervised learning”. Generative modelling falls into
this category: there are no labels attached to the datapoints, they’re just considered to be identically
distributed samples from the same distribution.

Unsupervised learning also includes all sorts of descriptive tools, with an emphasis on clustering
algorithms (though note that generative models can also be used to find clusters, as in example 1.9
below.) The advantage of generative modelling over descriptive algorithms is that it comes with a
general-purpose principled way to evaluate how good a model is, namely the likelihood function,
whereas descriptive algorithms are more ad hoc. Modern approaches to unsupervised learning such as
VAE (variational auto-encoders) and GANs (generative adversarial networks) are based on generative
modelling.

Exercise 1.7 (Coin tosses).
Suppose we take a biased coin and toss it n = 10 times, and observe the outcomes

(x1, . . . , x10) = (H,H, t, t,H,H, t, t,H,H).

Fit the probability model

X =

{
H with probability p

t with probability 1− p.

The density of X is

PrX(x | p) =

{
p if x = H

1− p if x = t

so the likelihood is

lik(p | x1, . . . , xn) =

n∏
i=1

{
p if xi = H

1− p if xi = t

= py(1− p)n−y where y = 6 is the number of heads

and the log likelihood is

log lik(p | x1, . . . , xn) = y log p+ (n− y) log(1− p).

Maximizing this with respect to p is exactly what we did in exercise 1.1 on page 2, and the answer is
p̂ = y/n = 0.6.

14 1.5 Learning generative models

Exercise 1.8 (Fitting a Normal distribution).
Let the dataset be x1, . . . , xn. Fit a Normal(µ, σ2) distribution, where µ and σ are unknown.

If X ∼ Normal(µ, σ2) then X is a continuous random variable with probability density function
The Normal distribution:
page 62 in the appendix

PrX(x | µ, σ) = 1√
2πσ2

e−(x−µ)2/2σ2

where −∞ < µ < ∞ and 0 < σ < ∞. The log likelihood function given a dataset x1, . . . , xn is

log lik(µ, σ | x1, . . . , xn) =

n∑
i=1

log PrX(xi | µ, σ)

=
∑
i

(
−1

2
log(2πσ2)− (xi − µ)2

2σ2

= −n

2
log(2π)− n logσ −

∑
i(xi − µ)2

2σ2
.

To find the maximum likelihood estimator, differentiate with respect to µ and σ and find where the
derivative is equal to zero. There are two parameters, so we have a pair of simultaneous equations to
solve:

∂

∂µ
log lik = −

∑
i 2(xi − µ)

2σ2
= 0

∂

∂σ
log lik = −n

σ
+

∑
i(xi − µ)2

σ3
= 0.

The solution is

µ̂ =

∑
i xi

n
, σ̂ =

√
1

n

∑
i

(xi − µ̂)2.

Exercise 1.9 (Gaussian mixture model).
The galaxies dataset3 consists of velocities in km/sec of 82 galaxies in the Corona Borealis region.
Clusters in such a dataset is evidence for voids and superclusters in the far universe.

1 galaxies = [
2 9172, 9350, 9483, 9558, 9775, 10227, 10406, 16084, 16170, 18419, 18552, 18600, 18927,
3 19052, 19070, 19330, 19343, 19349, 19440, 19473, 19529, 19541, 19547, 19663, 19846,
4 19856, 19863, 19914, 19918, 19973, 19989, 20166, 20175, 20179, 20196, 20215, 20221,
5 20415, 20629, 20795, 20821, 20846, 20875, 20986, 21137, 21492, 21701, 21814, 21921,
6 21960, 22185, 22209, 22242, 22249, 22314, 22374, 22495, 22746, 22747, 22888, 22914,
7 23206, 23241, 23263, 23484, 23538, 23542, 23666, 23706, 23711, 24129, 24285, 24289,
8 24366, 24717, 24990, 25633, 26690, 26995, 32065, 32789, 34279]

9 # A rug plot, with the y coordinates jittered to see more clearly
10 f ig , ax = plt . subplots (f ig s i ze =(8,.3))
11 j i tter_y = numpy.random. uniform(low=−1, high=1, s ize=len (galaxies))
12 ax . scatter (galaxies , j itter_y , marker=’+’ , alpha=.6)
13 for f in [’ l e f t ’ , ’ top ’ , ’ r ight ’] : ax . spines [f] . set_vis ible (False)
14 ax . set_ylim([−2 ,1.3])
15 ax . set_yticks ([])
16 plt .show()

10000 15000 20000 25000 30000 35000

Fit a Gaussian mixture model with three clusters. In other words, fit the random variable

X =

Normal(µ1, σ

2
1) with probability p1

Normal(µ2, σ
2
2) with probability p2

Normal(µ3, σ
2
3) with probability p3

1.5 Learning generative models 15

where p1 + p2 + p3 = 1, and all nine parameters are unknown.

According to an exercise on the example sheet, the density is

PrX(x) = p1
1√
2πσ2

1

e−(x−µ1)
2/2σ2

1 + p2
1√
2πσ2

2

e−(x−µ2)
2/2σ2

2 + p3
1√
2πσ2

3

e−(x−µ3)
2/2σ2

3

We’ll use numerical optimization. First, as described in section 1.2, we’ll rewrite in terms of uncon-
strained parameters. In this case, the constraints are pi ∈ [0, 1], p1 + p2 + p3 = 1, σi > 0, so let’s
optimize the parameter

θ = (q1, q2, µ1, µ2, µ3, τ1, τ2, τ3) ∈ R8

transformed into the parameters we want by

p1 =
eq1

eq1 + eq2 + 1
, p2 =

eq2

eq1 + eq2 + 1
, p3 =

1

eq1 + eq2 + 1

σ1 = eτ1 , σ2 = eτ2 , σ3 = eτ3 .

We can now define the likelihood function, and maximize the log likelihood.

1 import scipy . stats
2 Pr = scipy . stats .norm. pdf # density of the Normal distribution
3
4 def log l ik (θ , x) : # x is a vector of observations; returns a vector of loglik
5 q1 ,q2 , µ1 ,µ2 ,µ3 , τ1 ,τ2 ,τ3 = θ
6 p = numpy. exp([q1 ,q2 ,1])
7 [p1 ,p2 ,p3] = p / sum(p)
8 σ1 ,σ2 ,σ3 = numpy. exp([τ1 ,τ2 ,τ3])
9 l i k = p1∗Pr(x , loc=µ1 , scale=σ1) + p2∗Pr(x , loc=µ2 , scale=σ2) + p3∗Pr(x , loc=µ3 , scale=σ3)
10 return numpy. log(l i k)
11
12 # Initial guess inspired by the rug plot in the question
13 init ial_guess = [0 ,0 , 10000,20000,24000, math. log(1000),math. log(5000),math. log(8000)]
14 θ̂ = scipy . optimize . fmin(lambda θ : −numpy.sum(log l ik (θ , galaxies)) ,
15 initial_guess , maxiter=5000)
16
17 # Plot the fitted density, with a rug plot of the actual data
18 f ig , ax = plt . subplots ()
19 x = numpy. linspace(9000,36000,200)
20 f = numpy. exp(log l ik (θ̂ , x))
21 ax . plot (x , f/numpy.max(f)) # we don’t really care what the y-axis is
22 j i tter_y = numpy.random. uniform(low=0, high=0.05, s ize=len (galaxies))
23 ax . scatter (galaxies , j itter_y , marker=’+’ , alpha=.6)
24 ax . set_ylim(ymin=0)
25 plt .show()

10000 15000 20000 25000 30000 35000
0.0

0.2

0.4

0.6

0.8

1.0

3W. N. Venables and B. D. Ripley. Modern Applied Statistics with S (MASS). galaxies dataset. New York: Springer, 2002.
Source: M. Postman, J. P. Huchra, and M. J. Geller. “Probes of large-scale structures in the Corona Borealis region”. In:
Astronomical Journal (1986)

16 1.6 Supervised learning

1.6. Supervised learning

tl;dr. Consider a dataset in which each datapoint is a tuple of values. Think of it as a spreadsheet
or database table: each row/record is a datapoint, and the columns are fields in the tuple. Often
we want to understand how one item in the tuple depends on the others. The item we want
to understand is called the response variable or label and the others are called covariates or
predictors. Write yi for the label for record i ∈ {1, . . . , n}, and write xi for the predictor variable
or variables.
The goal is to find a probability model which, given the predictors, might have generated the
labels. This is called probabilistic supervised learning or regression modelling.

1. First, choose a probabilistic model for the label, where the distribution depends on one
or more unknown parameters as well as on the predictors. We want to view the yi as
independent samples, yi sampled from a random variable Yi with density Pr(y | θ, xi),
where θ is the unknown parameter.

2. Next, write out the likelihood of θ given the dataset. This is just the probability of observing
the dataset, which by independence is

lik(θ | y1, . . . , yn) = Pr(y1 | θ, x1)× · · · × Pr(yn | θ, xn).

3. Estimate θ using maximum likelihood estimation, i.e. by solving

θ̂ = arg max
θ

log lik(θ | y1, . . . , yn).

This is called fitting the model.

This is all there is to much of machine learning, especially Kaggle-style competitions—the art is
inventing models that fit the data well, and for which the parameters give insight. In section 2.4
we’ll study linear models, a flexible and interpretable class of regression models based on the Normal
distribution.

Exercise 1.10 (Simple linear regression).
Given a labelled dataset [(y1, x1), . . . , (yn, xn)] consisting of pairs of real numbers, fit the model

Yi ∼ Normal
(
a+ bxi, σ

2
)

which we could alternatively write as

Yi = a+ bxi + Normal(0, σ2),

where σ is given, and a and b are parameters to be estimated.

1 import scipy . stats
2 Pr = scipy . stats .norm. pdf
3
4 def log l ik (θ , x , y) :
5 a ,b = θ
6 l i k = Pr(y , loc=a+b∗x , scale=σ) # σ is a constant
7 return numpy. log(l i k)
8
9 init ial_guess = [0 ,1]
10 â ,b̂ = scipy . optimize . fmin(lambda θ : −numpy.sum(log l ik (θ ,x , y)) ,
11 initial_guess , maxiter=5000)
12

13 # Plot the line y = â+ b̂x, and superimpose the dataset
14 f ig , ax = plt . subplots (f ig s i ze =(6,4))
15 xnew = numpy. linspace (−.5,1.5,100)

1.6 Supervised learning 17

16 ax . plot (xnew, ahat+bhat∗xnew, l ines ty l e=’dotted ’ , color=’black ’)
17 ax . scatter (x , y)
18 ax . set_xlabel (’x ’)
19 ax . set_ylabel (’y ’)
20 plt .show()

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

Alternatively, in this case, the equations are simple enough that we can solve them with maths rather
than computation.
The density of Yi is

Pr(yi | a, b, xi) =
1√
2πσ2

e−(yi−a−bxi)
2/2σ2

so the log likelihood of the dataset is

log lik(a, b | y1, . . . , yn) =
n∑

i=1

log Pr(yi | a, b, xi)

=

n∑
i=1

{
−1

2
log(2πσ2)− (yi − a− bxi)

2

2σ2

}
= −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(yi − a− bxi)
2.

To find the maximum likelihood estimator, differentiate with respect to a and b and find where the
derivative is equal to zero. There are two parameters, so we have a pair of simultaneous equations to
solve:

∂

∂a
log lik =

1

σ2

n∑
i=1

(yi − a− bxi) = 0

∂

∂b
log lik =

1

σ2

n∑
i=1

(yi − a− bxi)xi = 0.

The solution is
b̂ =

nx̄ȳ −
∑

i xiyi
nx̄2 −

∑
i x

2
i

, â = ȳ − b̂x̄

where x̄ =
∑

i xi/n and ȳ =
∑

i yi/n.

Exercise 1.11 (Binomial regression).
The UK Home Office makes available several datasets of police records, at data.police.uk.
The stop-and-search dataset has been preprocessed to list the number of stops and the number of
those that led to the police finding something suspicious, for each police force and each year.

police_force year stops find

bedfordshire 2017 786 231
cambridgeshire 2016 1691 621
cambridgeshire 2017 581 264

Fit the model Yi ∼ Binom(xi, p) where Yi is the number of ‘find’ incidents in a given police

data.police.uk

18 1.6 Supervised learning

force and year, xi is the number of stops, and p is the parameter to estimate.

The binomial distribution is a discrete random variable commonly used for counting the number of
Binom is for the
Binomial random
variable: appendix
page 61

successes in a sequence of yes-no trials. If X ∼ Binom(n, p) then n is the number of trials, 0 ≤ p ≤ 1
is the success probability, and the probability mass function is

PrX(r | n, p) =
(
n

r

)
pr(1− p)n−r, r ∈ {0, . . . , n}.

We’ll assume the records in the dataset are independent, since we’re not told otherwise. In maths
notation,

Pr(y1, . . . , yn | p) =
n∏

i=1

(
xi

yi

)
pyi(1− p)xi−yi .

(Covariates are fixed and known so we’re treating them as constants in this equation, not as parame-
ters.) The log likelihood is

log lik(p | y1, . . . , yn) =
∑
i

(
log

(
xi

yi

)
+ yi log p+ (xi − yi) log(1− p)

)
= κ+

(∑
i

yi

)
log p+

(∑
i

xi −
∑
i

yi

)
log(1− p)

where κ is a constant i.e. doesn’t depend on p. The maximum likelihood estimator for p solves

d

dp
log lik(p | y1, . . . , yn) = 0

and the solution is
p̂ =

∑
i yi∑
i xi

.

This is not a very interesting model. The only slightly non-obvious thing it’s told us is “don’t estimate
p separately for each police force and year, then average these estimates; instead estimate p from the
whole aggregated data”. The modelling exercise becomes much more interesting when we use it to
investigate the influence of multiple covariates, e.g. how gender and race interact.

Example 1.12 (Neural network classification).
The ImageNet dataset consists of over 14 million images, each hand-annotated with a label. Here
are some sample rows:

image category

”otter”

”otter”

”cello”

Suppose we’ve built a black-box function

f(θ, x) = (s1, . . . , sK) ∈ RK

which takes in a vector of parameters θ, and an image x expressed as a vector of pixels, and
which returns a list of scores sk, one score for each category k ∈ {1, . . . ,K} where K is the
number of different categories. These scores are real values, perhaps not in the range [0, 1], so
we can’t use them directly in a probability model. Here’s a handy trick:4 define probabilities

pk = pk(θ, x) =
esk

es1 + · · ·+ esK
,

and consider the probability model

P(Yi = y | θ, xi) = py, y ∈ {1, . . . ,K}.

1.6 Supervised learning 19

The log likelihood is

log lik(θ | y1, . . . , yn) =
n∑

i=1

log pyi
(θ, xi).

To fit the model, we pick θ to maximize the log likelihood.
In deep learning, we use a function f implemented as a neural network (a convolutional

neural network, for image classification) and θ is the vector of the network’s connection weights.
Finding the maximum likelihood estimator for θ is referred to as “training the neural network”.

4This transformation from scores to probabilities is just an algebraic gimmick, a trick to map a vector in RK to a probability
vector, and it doesn’t have any deeper meaning. It’s called softmax in machine learning and multinomial logit in statistics.

20 1.7 Supervised learning and prediction loss *

1.7. Supervised learning and prediction loss *
Any number of deep learning tutorials refer to prediction and loss functions, but might not even men-
tion probability modelling at all. Yet section 1.6 explained supervised learning entirely in terms of
probability modelling and in particular maximum likelihood estimation. What’s the connection?

Let’s look more closely at the log likelihood that we seek to maximize. In all the three examples
from the last section, the goal “maximize the log likelihood of the unknown parameters given the
dataset” can, after some algebraic wrangling, be rewritten as

minimize
n∑

i=1

Loss
(
prep(yi), predθ(xi)

)
over θ

for appropriate functions Loss, prep, and predθ. The interpretation is that predθ(x) is the prediction
of our model when given input x, prep(y) is some housekeeping needed to put the label y into a form
suitable for prediction, and Loss(prep(y), p) is the penalty when the true label is y and we predicted p.

The loss-function interpretation doesn’t involve any explicit probability modelling. Someone
who doesn’t believe in probability theory could perfectly well formulate a task as a problem of mini-
mizing prediction loss; they might even claim that deep learning is entirely about prediction and loss
functions, and doesn’t need any modelling at all. However, you’re much better off starting with a
probability model:

• Without a probability model, different loss functions are just formulae that you have to mem-
orize. With a probability model, you still have to design a model, but the loss functions don’t
look like a laundry list of mystery.

• If you face a new type of dataset, it’s fairly intuitive to design a probability model for it, perhaps
in the form of simulation code. You can then derive the corresponding loss function, and since
it comes from your intuitive probability model, it should be well-behaved. On the other hand,
if you only think in terms of prediction loss, you might design a loss function that makes the
learning go haywire. Arguably, any sane loss function has a corresponding probability model.

• There are some probability models which don’t have a natural interpretation as minimizing
prediction loss. If you start with probability modelling, you allow yourself a wider class of
models.

• Unsupervised learning (in the form of generative modelling, section 1.5) and supervised learn-
ing are almost exactly the same thing, if we think in terms of probability models. If we think
in terms of prediction loss, it’s hard to even formulate what unsupervised learning is meant to
achieve.

Algebraic wrangling. Here are the details of how to turn “maximize log likelihood” into “minimize
prediction loss”, for two of the three problems. For exercise 1.10, we sought

arg max
a,b

{
−n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(yi − a− bxi)
2
}

which is equivalent to

arg min
a,b

∑
i=1

L(yi, a+ bxi) where L(y, x) = (y − x)2.

In example 1.12 we sought

arg max
θ

n∑
i=1

log pyi(θ, xi) = arg max
θ

n∑
i=1

K∑
k=1

1yi=k log pk(θ, xi).

The last expression involves 1{·} which denotes the indicator function, 1true = 1 and 1false = 0. This
is an algebraic trick to say “only keep the pk term where yi = k”. Equivalently, we sought

arg min
θ

n∑
i=1

L
(
onehot(yi), softmax(f(θ, xi))

)
where L(q, p) = −

(
q1 log p1 + · · ·+ qK log pK

)
and

onehot(y) =
(
1y=1, . . . , 1y=K

)
, softmax(s) =

(es1

es1 + · · ·+ esK
, . . . ,

esK

es1 + · · ·+ esK

)
In machine learning, this L is referred to as “cross-entropy loss”.

21

2. Feature spaces / linear regression
In data science, a feature is any measurable property of the objects being studied. A linear model is
a model with unknown parameters in which the parameters are weighted by features and combined
linearly.

Section 2.1 starts with a very simple linear model example, to flesh out the uselessly abstract
definitions above, and to show how to implement linear models in Python. In the following sections
we’ll elaborate:

• Linear models are expressive and interpretable, and we can use them to ask all sorts of questions
about a dataset by choosing appropriate features. We’ll look at examples in section 2.2. Linear
models should be your go-to models for all sorts of data science and machine learning problems,
the second thing you try (after simple tabulations) to get a sense of the data you’re working with.

• A simple way to estimate the parameters is using least squares estimation. There are fast algo-
rithms for doing this, which come from the mathematics of linear algebra. The mathematics
also gives insight into how linear models work, especially questions of parameter identifiability.
Section 2.3 contains a review of the relevant linear algebra.

• There is a probabilistic interpretation of least squares estimation: it is maximum likelihood
estimation, for a supervised-learning probability model in which the labels have a Gaussian
distribution. Section 2.4 describes this link.
Because linear modelling comes from a probability model, we can use all sorts of probability-
based inference techniques (which will be studied in Part III of this course) to compute confi-
dence intervals etc.

• Linear models are the building block for many other machine learning techniques such as lo-
gistic regression and deep neural networks (from the Part II course “Data science principles
and practice”) and support vector machines and perceptrons (from the Part II course “Machine
learning and Bayesian inference”).

22 2.1 Fitting a linear model

2.1. Fitting a linear model

tl;dr. A linear model can be written as

y = β1e1 + · · ·+ βKeK + ε

where y = (y1, y2, . . .) is the vector of responses with yi the value for record i in the dataset,
e1, . . . , eK are feature vectors with ek = (ek,1, ek,2, . . .)where ek,i is the value of the kth feature
for record i, βk is the parameter that weights the kth feature, and ε = (ε1, ε2, . . .) is a vector of
residuals, also called error or noise.
Least squares estimation means picking the parameters β to minimize the mean square error∑

i ε
2
i /n. Use sklearn.linear_model.LinearRegression() to do this.

Example 2.1.
The Iris dataset was collected by the botanist Edgar Anderson and popularized5 by Ronald Fisher
in 1936. Fisher has been described as a “genius who almost single-handedly created the foun-
dations for modern statistical science”. The dataset consists of 50 samples from each of three
species of iris, each with four measurements. The full dataset is https://teachingfiles.blob.
core.windows.net/datasets/iris.csv.

Petal length Petal width Sepal length Sepal width species
1.0 0.2 4.6 3.6 setosa
5.0 1.9 6.3 2.5 virginica
5.8 1.6 7.2 3.0 virginica
1.7 0.5 5.1 3.3 setosa
4.2 1.2 5.7 3.0 versicolor
. . .

Let’s investigate how petal length depends on sepal length. Here is a plot:

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal.Length

0

1

2

3

4

5

6

7

Pe
ta

l.L
en

gt
h

It suggests a curve. Let’s fit a quadratic curve, using the linear model

Petal.Length ≈ α+ β Sepal.Length + γ (Sepal.Length)2. (1)

Linear does NOT mean ‘straight line’. It refers to linear algebra—adding vectors, and multiplying
vectors by scalars. In vector form, the model saysPetal.Length1

Petal.Length2
...

 ≈ α

11...
+ β

Sepal.Length1

Sepal.Length2
...

+ γ

(Sepal.Length1)
2

(Sepal.Length2)
2

...

 .

5It’s tempting for computer scientists and mathematicians to think that data science is about algorithms and calculating with
distributions and so on, but shared datasets are arguably more important. C.P. Scott, the former editor of The Guardian, said
“Comment is free, but facts are sacred”.

Modern advances in neural networks and deep learning were propelled by two shared datasets: the MNIST database of
handwritten digits, and the ImageNet database of labelled photos. The story of ImageNet and of Fei-Fei Li, the researcher who
collected it, is told in The data that transformed AI research—and possibly the world, https://qz.com/1034972/the-data-
that-changed-the-direction-of-ai-research-and-possibly-the-world/.

In addition to shared datasets, it’s also useful to have a shared challenge, what David Donoho calls a common task framework.
See David Donoho. 50 years of Data Science. Presentation at the Tukey centennial workshop. 2015. URL: http://courses.
csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf

https://teachingfiles.blob.core.windows.net/datasets/iris.csv
https://teachingfiles.blob.core.windows.net/datasets/iris.csv
https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/
https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf

2.1 Fitting a linear model 23

In scientific computing, the coding style is also in terms of vectors:

1 i r i s = pandas . read_csv(’ https :// teachingf i les . blob . core .windows. net/datasets/ i r i s . csv ’)
2
3 # A linear model with three feature vectors [one, x, x**2] and the response vector y
4 one , x , y = numpy. ones(len (i r i s)) , i r i s [’Sepal .Length ’] , i r i s [’Petal . Length ’]
5 model = sklearn . linear_model . LinearRegression(fit_intercept=False)
6 model . f i t (numpy.column_stack([one , x , x∗∗2]) , y)
7 (α ,β ,γ) = model . coef_

(-17.447, 5.392, -0.296)

In fact the sklearn model fitting function always includes a one vector, unless we explicitly tell it
otherwise with fit_intercept=False. Another way to write this code is

8 model2 = sklearn . linear_model . LinearRegression ()
9 model2 . f i t (numpy.column_stack([x , x∗∗2]) , y)
10 α ,(β ,γ) = model2 . intercept_ , model . coef_

What does this fit look like? We could explicitly evaluate α + βx + γx2 for a range of x values and
plot. Or use model.predict(), to relieve us from re-typing the model formula.

11 newx = numpy. linspace (4.2 , 8.2 , 20)
12 predy = model . predict (numpy.column_stack([newx,newx∗∗2]))
13
14 f ig , ax = plt . subplots (f ig s i ze =(4.5,3))
15 ax . plot (newx, predy , color=’0.5 ’ , zorder=−1, linewidth=1, l ines ty l e=’dashed ’)
16 ax . scatter (i r i s [’Sepal .Length ’] , i r i s [’Petal . Length ’] , alpha=.3)
17 ax . set_ylim(0 ,7.5)
18 ax . set_ylabel (’Petal . Length ’)
19 ax . set_xlabel (’Sepal .Length ’)
20 plt .show()

4 5 6 7 8
Sepal.Length

0

1

2

3

4

5

6

7

Pe
ta

l.L
en

gt
h

Terminology. We’d describe model (1) as having two features, Sepal.Length, and (Sepal.Length)2.
The rows in this dataset have other attributes, and they can be transformed to create an infinite variety
of features, but we’ll only use the word feature for data attributes that are being used in a model. We
call Petal.Length the response or label in this model, not a feature.

Why two features, and not one, or three? From the perspective of the person preparing the
dataset, there is only one feature, Sepal.Length. From the perspective of the person computing α,
β, and γ, there are two data features that have to be accounted for, and it’s irrelevant that they came
from the same column in the dataset. From the perspective of a stickler for definitions, the definition
of ‘linear model’ says that parameters are weighted by features, so there is really a third feature, the
constant feature one with parameter α. Don’t get uptight about defining the word ‘feature’, just write
out your models explicitly, and there will be no confusion.

∗ ∗ ∗

The model is linear because it combines the unknown parameters α, β and γ in a linear formula.
There’s no reason to think this is in any way a ‘true’ model, and we could equally well have proposed
a non-linear model e.g.

Petal.Length ≈ α− βe−γSepal.Length.

Linear models are just easier to work with, so they’re a better place to start.

24 2.2 Features

2.2. Features
Here is a gallery of cunning ways to use features to ask questions about a dataset.

2.2.1. ONE‐HOT CODING

One-hot coding is used to turn an enum feature (also called categorical or factor) into a collection of
binary features, so it can be used in a linear model. Here’s an example.

The Iris data is made up of three species. Maybe there’s a straight-line fit between petal length
and sepal length, but with different slopes and intercepts for each species.

4 5 6 7 8
Sepal.Length

0

1

2

3

4

5

6

7
Pe

ta
l.L

en
gt

h
setosa
versicolor
virginica

One way to write this is

Petal.Length ≈ αspecies + βspeciesSepal.Length.

Here’s the same equation, but written as vectors, and abbreviating Petal.Length as PL, and Sepal.Length
as SL:

seto PL1

virg PL2

virg PL3

seto PL4

vers PL5

...

≈ αseto

1
0
0
1
0
...

+ αvirg

0
1
1
0
0
...

+ αvers

0
0
0
0
1
...

+ βseto

SL1

0
0

SL4

0
...

+ βvirg

0
SL2

SL3

0
0
...

+ βvers

0
0
0
0

SL5

...

Or writing symbols for the vectors:

PL ≈ αsetosseto + αvirgsvirg + αverssvers

+ βseto(sseto ⊗ SL) + βvirg(svirg ⊗ SL) + βvers(svers ⊗ SL)

In this equation, each sk is a binary vector marking out which rows belong to species k, for example
sseto = 1[Species=setosa]. This is called one-hot coding of the Species vector. Also, ⊗ means

1x also written 1[x] is
the indicator function,
1true = 1 and 1false = 0

elementwise multiplication.

1 species_levels = numpy. unique(i r i s [’ Species ’])
2 x , y = i r i s [’Sepal .Length ’] , i r i s [’Petal . Length ’]
3 s1 , s2 , s3 = (i r i s [’ Species ’]==s for s in species_levels)
4 model = sklearn . linear_model . LinearRegression(fit_intercept=False)
5 model . f i t (numpy.column_stack([s1 , s2 , s3 , s1∗x , s2∗x , s3∗x]) , y)

We’ve seen one-hot coding before, in section 1.7, where we used it to encode labels in an image
classification task.

Notation warning. The model equation

Petal.Length ≈ αspecies + βspeciesSepal.Length

should be interpreted as a vector equation. In Python, the αspecies vector comes from

2.2 Features 25

1 α = { ’ seto ’ : . . . , ’ virg ’ : . . . , ’ vers ’ : . . . } # a dictionary, one key per species
2 species = [’ seto ’ , ’ virg ’ , ’ virg ’ , ’ seto ’ , vers ’ , . . .] # a l i s t , one entry per datapoint
3 αspecies = [α [s] for s in species] # a l i s t , one entry per datapoint

It’s also possible to treat the equation as a ‘scientific’ equation, referring to a hypothetical individual.
The neat (or confusing) thing about this notation is that we write the same equation whether we’re
working on a dataset or reporting our findings.

2.2.2. NON‐LINEAR RESPONSE

We’ve already seen that we can use the quadratic feature (Sepal.Length)2 to capture smooth curves.
Higher degree polynomials have more parameters to estimate, so they’re more expressive and can fit
the data better, but it’s unwise to rely on them especially outside the range where we have data. In the
iris dataset from page 22,

Petal.Length ≈ α+ β1 Sepal.Length + β2 (Sepal.Length)2 + · · ·+ βK (Sepal.Length)K

4 6 8
Sepal.Length

0

2

4

6

8

Pe
ta

l.L
en

gt
h

degree K = 2

4 6 8

degree K = 3

4 6 8

degree K = 4

4 6 8

degree K = 10

A different approach is to use parameters for anchor points in an arbitrary curve. In this next model
the arbitrary curve is a step function with fixed x-axis breaks, and least squares estimation finds the
height at each step.

⌊x⌋ is x rounded down
to the nearest integer

Petal.Length ≈ β4 1
[
⌊Sepal.Length⌋ == 4

]
+ · · ·+ β7 1

[
⌊Sepal.Length⌋ == 7

]
.

4 5 6 7 8
Sepal.Length

0

2

4

6

Pe
ta

l.L
en

gt
h

This model is more honest because it is upfront about being an arbitrary fit to the data, incapable of
extrapolating outside the data range. This example isn’t interesting (we could just as well have fitted
each integer bin separately), but it’s very useful when combined with other features. More guidance
on curve fitting on page 29.

2.2.3. PERIODIC PATTERNS

Example 2.2.
The UK Met Office makes available historic data6 from 37 stations around the UK. Each station
has monthly records for mean daily maximum temperature tmax, mean daily minimum temper-
ature tmin, days of air frost af, total rainfall rain, and total sunshine duration sun. Coverage
varies; the longest records are from Oxford and from Armagh, going back to 1853. A snapshot
is available at https://teachingfiles.blob.core.windows.net/datasets/climate.csv.

https://teachingfiles.blob.core.windows.net/datasets/climate.csv

26 2.2 Features

month tmax tmin af rain sun station lat lng alt_m
1963 Sep 14.7 5.9 0 126.4 127.7 Eskdalemuir 55.311 -3.206 242
1955 Aug – – – 35.1 194.7 Shawbury 52.794 -2.663 72
1937 May 15.3 8.4 0 59.8 184.8 Lowestoft 52.483 1.727 18
2007 Aug 20.6 11.8 0 40.3 204.6 Waddington 53.175 -0.522 68
1925 July 21.8 12.6 0 23.2 – Sheffield 53.381 -1.490 131
. . .

The annual cycle makes it hard to compare the datapoints. A crude solution is to simply average
over the 12 months of each year, and plot this average over time. This isn’t ideal, because averaging
is lossy i.e. we’d be throwing away data; and because a missing value for one month will cause the
entire year to be missing.

A cleverer solution is to use features to model the effects we’re trying to capture. Let’s consider
the model

temp ≈ α+ β sin(2πt + θ)

where t is the date in years, and α, β, and θ are unknown parameters. Here is the data and the
fitted model for Cambridge station (measured at the National Institute of Agricultural Botany, near the
building for Artificial Intelligence and Environmental Risk). The plot shows the mean temperature
temp = (tmin + tmax)/2.

1985 1990 1995 2000 2005 2010 2015 2020 2025

0

10

20

m
ea

n
te

m
p

= 10.6, 1 = 1.07, 2 = 6.55

The model is linear in α and β and not in θ—but there is a cunning trick from A-level trigonometry
that lets us rewrite it as a linear model. The trick is

sin(A+B) = sinA cosB + cosA sinB

and so our model can be rewritten

temp ≈ α+ β1 sin(2πt) + β2 cos(2πt).

1 climate = pandas . read_csv(’ https :// teachingf i les . blob . core .windows. net/datasets/climate . csv ’)
2 df = climate . loc [(climate . station==’Cambridge ’) & (climate . yyyy>=1985)]
3 t = df . yyyy + (df .mm−1)/12
4 temp = (df . tmin + df .tmax)/2
5 model = sklearn . linear_model . LinearRegression ()
6 model . f i t (numpy.column_stack([numpy. sin(2∗numpy. pi∗t) , numpy. cos(2∗numpy. pi∗t)]) , temp)
7 α ,(β1 ,β2) = (model . intercept_ , model . coef_)

2.2.4. DISCOVERING FEATURES

It’s often illuminating to plot the residual vector, to find out if we have missed any features worth
encoding. Here’s an example. For the climate data above, we fitted the model

temp = α+ β1 sin(2πt) + β2 cos(2πt) + ε

(this time we’re writing the equation to make the residuals explicit). Here are two plots of ε, and they
show clearly that there’s a systematic trend over time, which we might fix by adding a +γt term to the
model.

6https://www.metoffice.gov.uk/public/weather/climate-historic

https://www.metoffice.gov.uk/public/weather/climate-historic

2.2 Features 27

0

10

20
Monthly average temperatures, predicted and observed

1985 1990 1995 2000 2005 2010 2015 2020 2025

5

0

5
Monthly average temperature, residual

1 climate = pandas . read_csv(’ https :// teachingf i les . blob . core .windows. net/datasets/climate . csv ’)
2 df = climate . loc [(climate . station==’Cambridge ’) & (climate . yyyy>=1985)].copy()
3 df [’ t ’] = df . yyyy + (df .mm−1)/12
4 df [’temp’] = (df . tmin + df .tmax)/2
5
6 # Fit the model
7 model = sklearn . linear_model . LinearRegression ()
8 X = numpy.column_stack([numpy. sin(2∗numpy. pi∗df . t) , numpy. cos(2∗numpy. pi∗df . t)])
9 model . f i t (X, df .temp)
10
11 # Get the residuals
12 df [’pred ’] = model . predict (X)
13 df [’ res id ’] = df .temp − df . pred
14
15 # Get predicted values, for the full timerange
16 newt = np. linspace(1985, 2024, 1000)
17 pred = model . predict (numpy.column_stack([numpy. sin(2∗numpy. pi∗newt) , numpy. cos(2∗numpy. pi∗newt)]))
18
19 with plt . rc_context({ ’ f igure . f i g s i ze ’ : (15, 1.7∗2.2) , ’ f igure . subplot . hspace ’ : 0.3}):
20 f ig , (ax1 ,ax2) = plt . subplots (nrows=2,ncols=1, sharex=True)
21
22 ax1 . plot (newt, pred , color=’0.7 ’ , zorder=0)
23 for (t , pred , res id) in zip (df . t , df . pred , df . res id) :
24 ax1 . arrow(t , pred , 0 , resid , alpha=0.5, color=’blue ’ i f resid<=0 else ’ red ’)
25 ax1 . scatter (df . t [df . resid <=0], df .temp[df . resid <=0], s=15, alpha=0.5, color=’blue ’)
26 ax1 . scatter (df . t [df . resid >0], df .temp[df . resid >0], s=15, alpha=0.5, color=’ red ’)
27
28 ax2 . scatter (df . t [df . resid <=0], df . res id [df . resid <=0], s=15, alpha=0.5, color=’blue ’)
29 ax2 . scatter (df . t [df . resid >0], df . res id [df . resid >0], s=15, alpha=0.5, color=’ red ’)
30 ax2 . axhline (0 , color=’0.6 ’ , zorder=−1)
31
32 ax1 . set_xlim([1984 , 2025])
33 ax1 . set_tit le (’Monthly average temperatures , predicted and observed ’)
34 ax2 . set_tit le (’Monthly average temperature , residual ’)
35 plt .show()

The refined model fit:
temp ≈ α+ β1 sin(2πt) + β2 cos(2πt) + γt.

36 model = sklearn . linear_model . LinearRegression ()
37 X = numpy.column_stack([numpy. sin(2∗numpy. pi∗df . t) , numpy. cos(2∗numpy. pi∗df . t) , df . t])
38 model . f i t (X, df .temp)
39 α ,(β1 ,β2 ,γ) = model . intercept_ , model . coef_

(-60.458, (-1.069, -6.5452, 0.0355))

Intercepts. Why is α so extreme? It is the temperature in the year 1 BC (there was no year 0 AD),
based on linearly extrapolating the rate γ. It’s daft to trust that the model will predict well for such a
wild extrapolation! If we rewrite the model in the equivalent form

temp ≈ α+ β1 sin(2πt) + β2 cos(2πt) + γ(t-2000)

28 2.2 Features

then α will report the temperature for year 2000.

∗ ∗ ∗

We design features for several purposes:

• Features to extract a particular summary from the data, e.g. the linear trend in the climate data
• ‘Black box’ features that capture enough detail for us to be able to make good predictions or

extrapolations—we don’t have to understand such features, we just want them to work well
• Features that turn arbitrary objects like tweets or sentence fragments into numbers that can

be put into quantitative models, e.g. distributional semantics which you will study in Part II
Natural Language Processing, and term frequency models for documents which you will study
in Part II Information Retrieval.

The more features we add, the better the fit i.e. the smaller the residual we can achieve. But
models with too many features tend to be bad at generalizing to new data (see the polynomial fits in
section 2.2.2). It’s an art to design sets of features that are expressive enough to capture the meaningul
variation in the data, while being parsimonious enough to generalize well.

2.2 Features 29

xkcd by Randall Munroe, https://xkcd.com/2048/

https://xkcd.com/2048/

30 2.3 Linear mathematics

2.3. Linear mathematics
A linear model like the Iris model on page 22 is a vector equation,Petal.Length1

Petal.Length2
...

 ≈ α

11...
+ β

Sepal.Length1

Sepal.Length2
...

+ γ

(Sepal.Length1)
2

(Sepal.Length2)
2

...

 .

In mathematics, vector equations like this come under the heading of linear mathematics. For data
science all we need is vectors in simple Euclidean space, Rn where n is the number of records in
the dataset—but it’s good for the soul to define linear algebra abstractly, so that the concepts can be
applied to other settings.7 The appendix on page 64 presents the abstract maths.

For the purposes of this course, all the concepts from linear mathematics that we’ll need are
shown in this picture:

Linearly independent vectors e1 and e2. A collection of vectors {e1, . . . , eK} is linearly dependent
if there is some set of real numbers (λ1, . . . , λK), not all equal to zero, such that

λ1e1 + · · ·+ λKeK = 0

If so, at least one of the ei can be written as a linear combination of the others. Otherwise, they are
linearly independent, and

λ1e1 + · · ·+ λKeK = 0 ⇒ λ1 = · · · = λK = 0.

If they are linearly independent then the rank of the matrix [e1, . . . , eK] is K, otherwise the rank is
< K.

The subspaceS spannedby e1 and e2. The subspace spanned by a collection of vectors {e1, . . . , eK},
also called their span, is the set of all linear combinations:

S =
{
λ1v1 + · · ·+ λKvK : λk ∈ R for all k

}
.

The projection of x onto x̃ ∈ S. Given a subspace S spanned by {e1, . . . , eK}, and any other vector
x, there is a unique vector x̃ that solves

x̃ = arg min
y∈S

∥x− y∥2.

This x̃ is called the projection of x ontoS, because the residual x−x̃ is orthogonal toS i.e. (x−x̃)·y =
0 for all y ∈ S.

Since x̃ ∈ S, it can be written as a linear combination of the ek,

x̃ = λ̂1e1 + · · ·+ λ̂KeK .

Finding the λ̂k is called least squares estimation, because the error term being minimized is a sum of
squares. If the ek are linearly independent then there is a unique solution for the λ̂k. Otherwise, there
are multiple ways to write the linear combination.

7See Part II lecture courses on Digital Signal Processing and Computer Vision (Fourier transforms and wavelets, where
vectors represent functions) and Quantum Computing (where vectors represent quantum states).

2.4 Linear regression and least squares 31

2.4. Linear regression and least squares

tl;dr. A linear regression is a probabilistic model of the form

Yi ∼ β1e1,i + · · ·+ βKeK,i + Normal(0, σ2)

where e1, . . . , eK are covariates, Y is the random response, and σ and β1, . . . , βK are unknown
parameters. It is implicit that the Yi are independent. This is a supervised learning problem; the
Yi are the labels, and the ek,i are the predictors.
Fitting this model to a vector of observed values y is equivalent to least squares estimation for
linear model

y ≈ β1e1 + · · ·+ βKeK .

To demonstrate the link between linear regression and linear models, it’s easier to work through an
illustration rather than to write out abstract equations.

For the Iris dataset on page 22, we investigated how petal length depends on sepal length. Con-
sider the linear regression model

Petal.Lengthi ∼ α+ β Sepal.Lengthi + γ (Sepal.Lengthi)
2 + Normal(0, σ2)

where i ∈ {1, . . . , n} indexes the rows of the dataset, and each Petal.Lengthi is an independent
random variable, and Sepal.Lengthi is being treated as a covariate i.e. a non-random value. For
brevity, let Yi = Petal.Lengthi, let ei = Sepal.Lengthi, and let fi = (Sepal.Lengthi)

2, giving

Yi ∼ α+ βei + γfi + Normal(0, σ2)

which (following the remark on page 10) can be rewritten

Yi ∼ Normal
(
α+ βei + γfi , σ

2
)
.

Then the density function for a single observation yi is

Pr(yi | α, β, γ, σ) =
1√
2πσ2

e−
(
yi−(α+βei+γfi)

)2/
2σ2

and the log likelihood of the entire dataset is

log lik(α, β, γ, σ | y) = −n

2
log

(
2πσ2

)
− 1

2σ2

n∑
i=1

(
yi − (α+ βei + γfi)

)2

.

Let’s find the maximum likelihood estimators for α, β, γ, and σ. We’ll do this in two steps. The first
step is to maximize the last term, i.e. find α̂, β̂, and γ̂ that solve

min
α,β,γ

∥∥y − (α1 + βe+ γf)
∥∥2.

In this equation we have switched to vector notation, and 1 means the vector [1, 1, . . . , 1]. This is
nothing other than least squares estimation for the linear model

Petal.Length ≈ α1 + βSepal.Length + γ(Sepal.Length2).

The second step is to find σ to maximize what’s left, i.e. to solve

max
σ>0

{
−n

2
log

(
2πσ2

)
− 1

2σ2

∥∥y − (α̂1 + β̂e+ γ̂f)
∥∥2}.

This is a simple one-parameter optimization problem, once we know α̂, β̂, and γ̂, and the solution is

σ̂ =

√
1

n

∥∥y − (α̂1 + β̂e+ γ̂f)
∥∥2.

32 2.5 Confounded features

2.5. Confounded features

tl;dr. When we fit a linear regression

Yi ∼ β1e1,i + · · ·+ βKeK,i +N(0, σ2)

to a dataset y, then finding maximum likelihood estimators is equivalent to finding least squares
estimates for the corresponding linear model

y ≈ β1e1 + · · ·+ βKeK .

• If the feature vectors {e1, . . . , eK} are linearly independent, then there is a unique solution
for the least squares estimates and hence for the maximum likelihood estimates.

• If the feature vectors are not linearly independent, then the estimates are not unique; there
are multiple ways to write any given linear combination of the feature vectors. We say the
parameters are non-identifiable or confounded.

Identifiability is about understanding whether or not a dataset is capable of answering the ques-
tions we want answered.

The linear space spanned by the feature vectors is called the feature space. To work out if the features
are linearly independent, use either the definition of linear independence or the matrix rank property
on page 30. A warning: sklearn.linear_model.LinearRegression always returns coefficients for some
linear combination, and in the non-identifiable case it will make an arbitrary choice.

If the feature vectors are confounded, then there is some feature vector that can be written in
terms of the others (by definition of linear independence). We can simply discard this feature; doing so
won’t change the feature space. For example, if there are three features {e, f, g} and e = 0.2f − 0.5g,
then any linear combination

y = αe+ βf + γg

can be rewritten
y = (β + 0.2α)f + (γ − 0.5α)g.

Thus the model with only two features {f, g} can express anything that can be expressed with {e, f, g}.

Exercise 2.3. Consider the simple straight-line linear regression

y ≈ α+ βx

for the dataset y = [5, 2, 1, 3], x = [1, 2, 4, 5]. Are the feature vectors linearly independent? If x
or y were different, would your answer change?

The feature vectors are

one =

1
1
1
1

 and x =

1
2
4
5

 .

We can just look at these and see that there is no way to write one in terms of x, or x in terms of one,
so they are linearly independent. Alternatively, use Python to check the rank of the matrix [one,x] is 2:

1 one = [1 ,1 ,1 ,1]
2 x = [1 ,2 ,4 ,5]
3 numpy. l ina lg .matrix_rank(numpy.column_stack([one , x]))

To test linear independence for an arbitrary x = [x1, . . . , xn], we have to ask if it’s possible to solve

α one + β x = 0

with non-zero coefficients. It’s reasonably easy to see, in this case, that if x1 = · · · = xn then they
are linearly dependent: either all the xi are equal to zero in which case (α, β) = (0, 1) works, or they

2.5 Confounded features 33

are nonzero in which case (α, β) = (x1, 1) works. In other words, if all the x coordinates are equal,
then we can’t fit a straight line.

Alternatively, if we wanted to be formal about it, we’d write the vector equation as simultaneous
equations,

α+ βx1 = 0

α+ βx2 = 0

...

and solve them with pure algebra.
The question “are the feature vectors linearly independent?” is only about the feature vectors,

so it doesn’t depend on y, only on x.

Example 2.4.
The UK Home Office makes available several datasets of police records, at data.police.uk. The
dataset police is a log of stop-and-search incidents, available as https://teachingfiles.blob.
core.windows.net/datasets/stop-and-search.csv. Here is a sample of rows.

police force operation date-time lat lng gender age ethnicity
object of search outcome

Hampshire NA 2014-07-31T23:20:00 50.93 -1.38 Male 25–34 Asian
controlled drugs nothing found

Hampshire NA 2014-07-31T23:30:00 50.91 -1.43 Male 34+ White
controlled drugs suspect summonsed

Hampshire NA 2014-07-31T23:45:00 51.00 -1.49 Male 10–17 White
controlled drugs nothing found

Hampshire NA 2014-08-01T00:40:00 59.91 -1.40 Male 34+ White
stolen goods nothing found

Hampshire NA 2014-08-01T02:05:00 50.88 -1.32 Male 10–17 White
article for use in theft nothing found

We wish to investigate whether there is racial bias in police decisions to stop-and-search. Con-
sider the linear model

1[outcome = find] ≈ α+ βeth

where eth is the vector of ethnicities. If the police are biased against ethnicity Black for example,
then we’d expect relatively more fruitless stops of individuals of that ethnicity, i.e. more stops
for which 1[outcome = find] = 0, hence βBlack would be smaller than the other β coefficients.

Write this model as a linear equation using one-hot coding. Are the parameters identifi-
able? If not, rewrite the model so that they are.

(It’s a hack to treat a binary response as a real number with an implied Normal distribution. However,
(i) the question only asks about parameter identifiability, which is a question about the feature vec-
tors not the response, and (ii) the hack can still give us interesting answers about the distribution of
response.)

With one-hot coding, the model is

1[outcome=find] ≈ α one +
∑

k∈ethnicities

βk1[eth = k].

We want to know whether the parameters are identifiable, i.e. whether the feature vectors are linearly
independent. We can test this by looking at the matrix rank. There are 6 features, but the matrix rank
is only 5, therefore they’re not linearly independent.

1 # It’s a big file, so retrieve it and store locally for future use
2 i f os . path . ex ists (’ stop−and−search . csv ’) :
3 print (” f i l e already downloaded”)
4 else :
5 !wget ”https :// teachingf i les . blob . core .windows. net/datasets/stop−and−search . csv”
6 police = pandas . read_csv(’ stop−and−search . csv ’)
7

https://data.police.uk
https://teachingfiles.blob.core.windows.net/datasets/stop-and-search.csv
https://teachingfiles.blob.core.windows.net/datasets/stop-and-search.csv

34 2.5 Confounded features

8 # Discard rows with missing ethnicity
9 ethnicity_levels = [’Asian ’ , ’Black ’ , ’Mixed ’ , ’Other ’ , ’White ’]
10 ok = police [’ officer_defined_ethnicity ’] . i s i n (ethnicity_levels)
11 eth = police . loc [ok , ’ officer_defined_ethnicity ’]
12
13 # Assemble the feature matrix, one column per feature, and check its rank
14 eth_onehot = [(eth==i) . astype(int) for i in ethnicity_levels]
15 X = numpy.column_stack([numpy. ones(len (eth))] + eth_onehot)
16 X. shape , numpy. l ina lg .matrix_rank(X)

((940998, 6), 5)

But this doesn’t give us any insight into what’s wrong with the model. For that, maths is better.
First, note that the feature matrix has lots of duplicate rows, which (for the purposes of understanding
identifiability) are irrelevant. In fact, there are only as many distinct rows as there are distinct ethnicity
levels in the dataset, namely 5.

17 police . groupby(’ officer_defined_ethnicity ’) . apply(len)

Asian 125646
Black 253315
Mixed 1644
Other 27809
White 532584

So we’re essentially only interested in the vectors

one 1[eth=Asian] 1[eth=Black] 1[eth=Mixed] 1[eth=Other] 1[eth=White]
1
1
1
1
1

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

0
0
0
0
1

Clearly the five one-hot coding vectors sum up to one, so the one vector is redundant. Also, those five
vectors are clearly linearly independent. So if we write the model as

1[outcome=find] ≈
∑

k∈ethnicities

βk1[eth = k]

then the parameters are identifiable.

∗ ∗ ∗

Data science is all about noise and uncertainty, whereas linear independence is a strict clean mathemat-
ical definition, so we shouldn’t pay too much attention to it. Even when feature vectors are linearly
independent, if they are closely correlated then the parameters will be hard to identify—in a sense
which will be made precise when we study confidence intervals in part III. Features that are linearly
independent but closely correlated are also described as confounded.

2.6 Gauss’s invention of least squares * 35

2.6. Gauss’s invention of least squares *

There is a link between linear regression and least squares estimation, but it’s not just “Oh, how nice,
after we’ve done least squares estimation we can express our answer as a probability model.” Arguably,
the probability model has primacy. (i) In many situations, random quantities can be approximated by

Part III will study
inference procedures.
Part IV will explain the
use of the Normal as an
approximation.

a Normal distribution. (ii) Likelihood is a fundamental measure of evidence for all sorts of inference
procedures. (iii) Maximum likelihood estimation for Normal random variables is equivalent to least
squares estimation. (iv) Therefore, least squares estimation is a reasonable thing to do, and not just a
totally heuristic kludge.

Least squares estimation was invented by Carl Friedrich Gauss, the ‘prince of mathematicians’,
who also invented the Gaussian distribution—referred to in these notes as the Normal distribution.
Here is Gauss’s account8 of how the idea of least squares came to him. Before Gauss, . . .

. . . in every case in which it was necessary to deduce the orbits of heavenly bodies from
observations, there existed advantages not to be despised, suggesting, or at any rate per-
mitting, the application of special methods; of which advantages the chief one was, that by
means of hypothetical assumptions an approximate knowledge of some elements could be
obtained before the computation of the elliptic elements was commenced. Notwithstand-
ing this, it seems somewhat strange that the general problem—To determine the orbit of a
heavenly body, without any hypothetical assumption, from observations not embracing a
great period of time, and not allowing the selection with a view to the application of spe-
cial methods,—was almost wholly neglected up to the beginning of the present century;
or at least, not treated by any one in a manner worthy its importance; since it assuredly
commended itself to mathematicians by its difficulty and elegance, even if its great util-
ity in practice were not apparent. An opinion had universally prevailed that a complete
determination from observations embracing a short interval of time was impossible—an
ill-founded opinion—for it is now clearly shown that the orbit of a heavenly body may
be determined quite nearly from good observations embracing only a few days; and this
without any hypothetical assumption.

Some idea occurred to me in the month of September of the year 1801, engaged at the time
on a very different subject, which seemed to point to the solution of the great problem of
which I have spoken. Under such circumstances we not unfrequently, for fear of being too
much led away by an attractive investigation, suffer the associations of ideas, which more
attentively considered, might have proved most fruitful in results, to be lost from neglect.
And the same fate might have befallen these conceptions, had they not happily occurred
at the most propitious moment for their preservation and encouragement that could have
been selected. For just about this time the report of the new planet, discovered on the first
day of January of that year with the telescope at Palermo, was the subject of universal con-
versation; and soon afterwards the observations made by the distinguished astronomer
Piazzi from the above date to the eleventh of February were published. Nowhere in the
annals of astronomy do we meet with so great an opportunity, and a greater one could
hardly be imagined, for showing most strikingly, the value of this problem, than in this
crisis and urgent necessity, when all hope of discovering in the heavens this planetary
atom, among innumerable small stars after the lapse of nearly a year, rested solely upon
a sufficiently approximate knowledge of its orbit to be based upon these very few observa-
tions. Could I ever have found a more seasonable opportunity to test the practical value
of my conceptions, than now in employing them for the determination of the orbit of the

8Carl Friedrich Gauss. Theoria motus corporum coelestium in sectionibus conicis solem ambientum. 1809. English trans-
lation: Charles Henry Davis. Theory of the motion of the heavenly bodies moving about the sun in conic sections. 1857. URL:
https://quod.lib.umich.edu/m/moa/AGG8895.0001.001/15?rgn=full+text;view=image.

https://quod.lib.umich.edu/m/moa/AGG8895.0001.001/15?rgn=full+text;view=image

36 2.6 Gauss’s invention of least squares *

planet Ceres, which during the forty-one days had described a geocentric arc of only three
degrees, and after the lapse of a year must be looked for in a region of the heavens very
remote from that in which it was last seen? This first application of the method was made
in the month of October, 1801, and the first clear night, when the planet was sought for
(by de Zach, December 7, 1801) as directed by the numbers deduced from it, restored the
fugitive to observation. Three other new planets, subsequently discovered, furnished new
opportunities for examining and verifying the efficiency and generality of the method.
Several astronomers wished me to publish the methods employed in these calculations im-
mediately after the second discovery of Ceres; but many things—other occupations, the
desire of treating the subject more fully at some subsequent period, and, especially, the
hope that a further prosecution of this investigation would raise various parts of the solu-
tion to a greater degree of generality, simplicity, and elegance,—prevented my complying
at the time with these friendly solicitations. I was not disappointed in this expectation,
and I have no cause to regret the delay. For the methods first employed have undergone
so many and such great changes, that scarcely any trace of resemblance remain between
the method in which the orbit of Ceres was first computed, and the form given in this
work. Although it would be foreign to my purpose, to narrate in detail all the steps by
which these investigations have been gradually perfected, still, in several instances, par-
ticularly when the problem was one of more importance than usual, I have thought that
the earlier methods ought not to be wholly suppressed. But in this work, besides the so-
lution of the principal problems, I have given many things which, during the long time I
have been engaged upon the motions of the heavenly bodies in conic sections, struck me
as worthy of attention, either on account of their analytical elegance, or more especially
on account of their practical utility.

37

Part II
Handling probability models
3. Simulations and calculations
Computer scientists are used to reasoning about algorithms, for example to prove correctness or to
analyse running time. Dijkstra is associated with this school of mathematical reasoning about code:9

Programming is one of the most difficult branches of applied mathematics; the poorer
mathematicians had better remain pure mathematicians.

Suppose we have a simulator that uses random number generators—in other words, suppose we have
a probability model expressed in code. It’s natural to want to analyse it mathematically, Dijsktra-style.
For example, we might have implemented a climate simulator that uses random variables, and we
might want to calculate the distribution of its output, e.g. the frequency of extreme events. This will
typically involve integrals, for calculating probabilities and expectations.

There is another stance, diametrically opposed to Dijkstra’s. Suppose we have a probability
model for the climate, expressed as equations with random variables, and we want to calculate the
distribution of the output. If the maths is too hard (as it usually is), we can just implement the model
in a simulator, and run it, and we’ll see its output directly. (Or, more precisely, if we run it many times,
we’ll see a random sample drawn from the model’s output distribution.) This is called Monte Carlo
simulation—so perhaps the mathematical approach ought to be called the “Trinity College method”
in honour of Newton, its most famous son.

The middle way, a bit of computation and a bit of maths, is best. There are some situations
where the maths is too hard and computation is the only tool available. There are other situations,
such “inverse problems” in which we know the model’s output and want to deduce the likely input,
where computation is too slow without some mathematical help. It’s easy to get 1000-fold speedup
by replacing an inner simulation loop with a deft equation.

The question of how accurate Monte Carlo simulation is, we defer to the study of limit theorems
in part IV.

∗ ∗ ∗

In this section we will study various mathematical and simulation tools for reasoning about probability
models. From the point of view of this course, this section is really a build-up to Bayesian inference.

• Bayes’s rule is based on conditional probability, so you need understand the idea of a conditional
random variable (section 3.5) which is built on the idea of random tuples and marginal densities
(section 3.4)

• Bayesian calculations generally involve the “densities sum to one” rule (section 3.2)
• Bayesian computation can be done with weighted Monte Carlo integration, which builds on

standard Monte Carlo integration (section 3.1).

9Edsger W. Dijkstra. “How do we tell truths that might hurt?” personal note EWD498. URL: http://www.cs.utexas.
edu/users/EWD/ewd04xx/EWD498.PDF.

http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD498.PDF
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD498.PDF

38 3.1 Monte Carlo integration

3.1. Monte Carlo integration

tl;dr. The mean or expectation of a random variable X is

EX =

{∑
x xPrX(x) for a discrete random variable∫

x
xPrX(x) dx for a continuous random variable.

More generally, if h is some real-valued function, then Eh(X) is

Eh(X) =

{∑
x h(x)PrX(x) for a discrete random variable∫

x
h(x)PrX(x) dx for a continuous random variable.

This can be approximated by

Eh(X) ≈ 1

n

n∑
i=1

h(xi)

where x1, . . . , xn is a sample drawn from distribution X . This approximation is called Monte
Carlo integration.

The formal statement of Monte Carlo integration is useful when we come in part 4.3 to analysing
how accurate the approximation is, but it obscures the simplicity of the idea. To better convey the
idea, here are some different contexts in which it’s used. Afterwards, on page 39, a note on efficient
implementation in Python.

ESTIMATING PROBABIL IT IES

Suppose we want to estimate P(X ∈ A). The obvious strategy is to simulate X many times, and
count how often it lies in A.

1 # Let X ∼ N(µ = 1, σ = 3). What is P(X > 5)?
2 x = numpy.random.normal(loc=1, scale=3, s ize=10000) # simulate the r.v.
3 i = x > 5 # i is a Boolean vector, same length as x
4 numpy.mean(i) # returns the average of i, treating True as 1 and False as 0

To connect this to the abstract definition, we’re defining

h(x) =

{
1 if x > 5

0 if x ≤ 5,

setting I = h(X), and computing E I . The function we’re using is called an indicator function,
h(x) = 1x>5, and another way of writing the approximation is

P(X ∈ A) = E 1X∈A ≈ 1

n

n∑
i=1

1Xi∈A.

ESTIMATING AN INTEGRAL

Suppose we’ve been asked to find ∫ b

x=a

h(x) dx .

The method you might have learnt at school is to split the x range into n equally sized pieces, and
approximate the function by a series of rectangles, taking the height of the rectangle to be the value
of h at the midpoint.

≈
n∑

i=1

h(xi)w, where xi = a+ w
(
i− 1/2

)
, w =

b− a

n
.

3.1 Monte Carlo integration 39

The sum is just h evaluated at n grid points, times a constant. There’s nothing special about those
grid points. Why not just pick the sampling points at random? In other words, pick n independent
Uniform[a, b] random variables X1, . . . , Xn, and approximate

≈ b− a

n

n∑
i=1

h(Xi).

To connect this to the abstract definition, we’re using X ∼ U [a, b], so

Eh(X) =

∫
h(x)PrX(x) dx by definition of expectation

=

∫ b

a

h(x)
1

b− a
dx since PrX(x) =

1

b− a
for x ∈ [a, b]

≈ 1

n

n∑
i=1

h(Xi) by the Monte Carlo approximation

and so, rearranging, ∫ b

a

h(x) dx ≈ b− a

n

n∑
i=1

h(Xi) .

VECTORIZED COMPUTATION *

To compute the Monte Carlo approximation
∑

i h(xi)/n, we need to generate a large sample (x1, . . . , xn)
and then apply h to each item. In Python, the best coding style for this is vectorized.

Vectorized thinking is great for conciseness. Surely no one would prefer the iterative style

1 tot = 0
2 for _ in range(n) :
3 x = rng()
4 tot = tot + h(x)
5 tot/n

or even the list comprehension style

6 xs = [rng() for _ in range(n)]
7 sum(h(x) for x in xs) / n

when they can just write

8 x = rng(s ize=n)
9 numpy.mean(h(x))

But vectorized coding is perhaps more important from the point of view of performance. Every time
the Python interpreter has to evaluate a Python expression there’s a performance hit; the first two
versions take this hit on every sample, whereas in the vectorized version the iteration is all done in
numpy’s C code. On a larger scale, if n is so large that the computation should be split across multiple
cores or machines, then it’s hard for a compiler to see how to achieve parallelization when the function
is written out as iteration, much easier when it is vectorized. Vectorized thinking means avoiding for
loops and instead writing our computations in a way that shows our intention more clearly, to give the
compiler a chance to figure out what can be distributed and parallelized.

It’s worth getting familiar with the vectorized routines in numpy. See the course material for
IA Scientific Computing, chapter 2.

https://notebooks.azure.com/djw1005/projects/cl-scicomp/html/2.%20Numerical%20computation.ipynb
https://notebooks.azure.com/djw1005/projects/cl-scicomp/html/2.%20Numerical%20computation.ipynb

40 3.2 Probability densities sum to one

3.2. Probability densities sum to one
There are two properties that arises again and again in Bayesian calculations. For any random variable
X , and for any event A,∑

x

PrX(x) = 1 and P(A) =
∑
x

P(A |X = x)PrX(x).

The first is called “densities sum to one”, and the second is called “the law of total probability”. These
equations as written are for discrete random variables; if X is a continuous random variable then
replace the sum by an integral.

Exercise 3.1.
Let X be a random variable taking values {0, 1, . . . } in with PrX(x) = κrx where 0 < r < 1 is
given and κ is a constant. Find κ.

By the “densities sum to one” rule,
∑∞

x=0 PrX(x) = 1, hence
Standard maths formulae:
1 + r + r2 + · · · =
1/(1 − r) for |r| < 1,
and
1 + r + · · · + rn =
(1 − rk+1)/(1 − r).

∞∑
x=0

κrx =
κ

1− r
= 1

hence κ = (1− r). Furthermore,

F (x) =

x∑
y=0

(1− r)rx = (1− r)
1− rx+1

1− r
= 1− rx+1.

Exercise 3.2 (The Beta distribution).
The Beta distribution describes a continous [0, 1]-valued random variable, with density function

Pr(x) =
(
a+ b− 1

a− 1

)
xa−1(1− x)b−1

(but with a generalized form of the binomial coefficient when a or b is non-integer).

1. Suppose Y is a [0, 1]-valued continuous random variable with density

PrY (y) = κy2(1− y)3 .

Find κ.
2. Without using any calculus, find ∫ 1

y=0

y PrY (y) dx .

Part (1). By the “densities sum to one” rule applied to X ∼ Beta(a, b),∫ 1

x=0

(
a+ b− 1

a− 1

)
xa−1(1− x)b−1 dx = 1,

and if we let ã = a− 1 and b̃ = b− 1 and rearrange, we get∫ 1

x=0

xã(1− x)b̃ dx = 1
/ (

ã+ b̃+ 1

ã

)
.

Applying this to Y , ∫ 1

y=0

PrY (y) dy = κ
/ (

6

2

)
.

By the “densities sum to one” rule, κ =
(
6
2

)
= 15.

Part (2). The integral we want is∫ 1

y=0

κy3(1− y)3 dy = κ
/ (

7

3

)
= 15/35 = 3/7.

3.3 Handling numerical random variables * 41

3.3. Handling numerical random variables *
Calculating with probabilities, like any area of mathematics, is a skill that can only be aquired through
practice. There is no universal method (thanks, Gödel!), but nevertheless here’s a tip:

• Try to express your problem in equations that use random variables.
• If that doesn’t work, try working with the cumulative distribution function P(X ≤ x), or the

tail distribution function P(X > x).
• If everything fails, your last resort is the density function PrX(x) and integration.

To understand the concepts behind data science and machine learning, you don’t actually need to do
any probability calculations, you can just use Monte Carlo integration instead. But if your competitor
is good at probability, they’ll be able to write faster code. Also, when it comes to the exam you won’t
have a computer, so you’ll have to be able to do some calculation …

TRANSFORMING RANDOM VARIABLES

When trying to find the distribution of a continuous random variable that’s a function of another,
try working with the cumulative distribution function because that’s often easier than densities. For
discrete random variables, the cumulative distribution function is also a good bet, but densities also
work.

Exercise 3.3. Let U ∼ U [0, 1] and let X = U2. Find the density of X .

Let’s first find the cumulative distribution of X:

P(X ≤ x) = P(U2 ≤ x) by definition of X
= P(U ≤

√
x) assuming x ≥ 0, otherwise the probability is 0

=
√
x since for a Uniform r.v. P(U ≤ y) = y for y ∈ [0, 1]

Now we can find the density by differentiation:

PrX(x) =
d

dx
P(X ≤ x) =

1

2
√
x
.

Exercise 3.4 (Generating an Exponential and a Geometric).
Here is code for generating a random variable:

1 p = . . . # a constant in the range (0,1)
2 λ =− math. log(1−p)
3 u = random.random()
4 x =− math. log(u) / λ
5 y = math. ce i l (x)

Find the distributions of the random variables generated in lines 4 and 5.

When you are asked “find the distribution”, you can give your answer either as a density, or as
a cumulative distribution function, or, if it’s a standard distribution, by naming the distribution.

Write U , X , and Y for the three random variables. Since U is generated by random.random() it’s a
simple Uniform random variable, for which

P(U ≤ x) = x for x ∈ [0, 1].

To find the distribution of X = −math.log(U)/λ, let’s try working with the cumulative distribution
function: math.log is the natural

logarithm.

P(X ≤ x) = P
(
− 1

λ
log(U) ≤ x

)
= P

(
log(U) ≥ −λx

)
= P(U ≥ e−x) = 1− e−x.

This is the cumulative distribution function of an Exponential random variable of rate λ.
List of common random
variables: appendix
page 61

42 3.3 Handling numerical random variables *

Now for the distribution of Y = math.ceil(X). This is a discrete random variable, and so we

math.ceil rounds up to
the nearest integer

could work with either the cumulative distribution function or the density. Let’s try the former. For
any integer k,

P(Y ≤ k) = P(math.ceil(X) ≤ k) = P(X ≤ k) = 1− e−λk.

(This is the same formula as the cumulative distribution function for X , but X and Y are not the
same: X is a continuous random variable and the formula holds for any x > 0, whereas Y is a
discrete random variable and the formula is only correct for integer k.) Rewriting in terms of p,

P(Y ≤ k) = 1− (e−λ)k = 1− (1− p)k.

We might recognize this as the cumulative distribution function for a Geometric random variable and
stop here. Or we could also go a step further and work out the density:

P(Y = k) = Prob(Y ≤ k)− P(Y ≤ k − 1) = (1− p)k−1 − (1− p)k = (1− p)k−1p.

The probabilities subtract like this because the event {Y ≤ k−1} is nested inside the event {Y ≤ k}.
*** TODO: Show a nest

Exercise 3.5 (Equality of distributions).
Here are two pieces of code for generating random variables:

1 def rgeom(p) :
2 λ =− math. log(1−p)
3 u = random.random()
4 x =− math. log(u) / λ
5 return math. ce i l (x)
6
7 def rgeom2(p) :
8 x = 1
9 while random.random() > p :
10 x = x + 1
11 return x

Show that the two pieces of code generate identically distributed random variables.

We have shown in exercise 3.4 that rgeom(p) generates a Geom(p) random variable, for which

Pr(k) = (1− p)k−1p , for k ∈ {1, 2, . . . }.

Now turn to rgeom2(p). This is a “one thing after another” piece of code, and for such cases we often
“One thing after another”
probability models are
called Markov chains.
See part 4.3.

brute-force the calculation by using densities. Let’s work out some examples.

• In order for rgeom2 to output 1, we need the random.random()>p test to fail on the first pass,
i.e. we need random.random()<=p, which happens with probability p.

• For rgeom to output 2, we need the test to succeed on the first pass then fail on the second. Let’s
call the first random.random() value U1 and the second U2. By the way the code is written, U1Why are U1 and U2

independent? Look back
at page 7.

and U2 are independent, so

P(X1 > p and X2 ≤ p) = P(X1 > p)P(X2 ≤ p) = (1− p)p.

• Generalizing, if X is the output of rgeom2(p), then

P(X = k) = (1− p)k−1p.

Thus the output of rgeom2 is a Geom(p) random variable, the same distribution as produced by
rgeom.

OTHER TRICKS

The example sheet will guide you through some other useful tricks for probability calculations.

3.4 Random tuples 43

3.4. Random tuples
Two or more random variables may be linked. For example, here’s some code that simulates a pair of
dice throws repeatedly until they give different values. If I generate (X,Y) with this code, and tell
you the value of X , then that gives you some information about the value of Y .

1 def rxy () :
2 while True :
3 x = random. randint (1 ,6)
4 y = random. randint (1 ,6)
5 i f x != y :
6 break
7 return (x , y)

We often work with probability models that produce random tuples and we’re only interested in one
of them, so we just ignore the others. This is called marginalization.

8 xysample = [rxy () for _ in range(10000)]
9 xsample = [x for x , y in xysample]

In mathematical notation, a pair of discrete random variables is described by their joint density PrX,Y (x, y) =
P(X = x and Y = y), so that

P
(
(X,Y) ∈ C

)
=

∑
(x,y)∈C

PrX,Y (x, y)

and the marginal distribution of X is

PrX(x) =
∑
y

PrX,Y (x, y).

These two equations also hold for a pair of continuous random variables; just replace sums by integrals.
Formally, the pair Z = (X,Y) is itself a random variable, taking values e.g. in R2, and PrX,Y

is just its density. The “probability densitites sum to one” rule applies to Z:
∑

x,y PrX,Y (x, y) = 1.
And all of these ideas extend to tuples of any length.

Recall from section 1.4 that X and Y are independent if

PrX,Y (x, y) = PrX(x)PrY (y).

FINDING MARGINAL DISTRIBUTIONS

Mathematicians who work in probability theory spend a lot of their time doing calculations with joint
distributions. For the purposes of this course, the only calculation that really matters is finding a
marginal distribution.

Exercise 3.6. The precise number of people on the Titanic is unclear due to confusion over pas-
senger lists. One dataset lists 2201 passengers, and for each it gives the classC ∈ {1st, 2nd, 3rd, crew},
the sex S ∈ {male, female}, the age A ∈ {child, adult}, and whether or not this person survived
Y ∈ {survived, died}.

Find the marginal distribution of Y . Find the marginal distribution of (Y, S). Explain the
relationship between the two.

The dataset is available at https://teachingfiles.blob.core.windows.net/datasets/
titanic.csv.

1 t i tan ic = pandas . read_csv(’ https :// teachingf i les . blob . core .windows. net/datasets/t i tan ic . csv ’)
2
3 # The marginal distribution of Y
4 x = titan ic . groupby(’Survived ’) . apply(len)
5 x/sum(x)

Survived
died 0.676965
survived 0.323035

https://teachingfiles.blob.core.windows.net/datasets/titanic.csv
https://teachingfiles.blob.core.windows.net/datasets/titanic.csv

44 3.4 Random tuples

6 # The marginal distribution of (Y, S), with row and column totals.
7 x = titan ic . groupby([’Survived ’ , ’Sex ’]) . apply(len)
8 x = x / sum(x)
9 x = x . unstack() # convert the answer to an array
10 x . loc [’TOTAL’] = x .sum(axis=0) # add column and row sums
11 x [’TOTAL’] = x .sum(axis=1)
12 x

Sex Female Male ALL
Survived
died 0.057247 0.619718 0.676965
survived 0.156293 0.166742 0.323035
ALL 0.213539 0.786461 1.000000

The marginal distribution of Y shows itself as the row totals in a table showing the distribution of
(Y, S). (It’s called “marginal distribution” because the obvious place to write row and column totals
is in the margin of the table.)

Exercise 3.7. Consider a pair of random variables with joint density

PrX,Y (x, y) =
3

16
xy2 , 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

Find PrX(x) and PrY (y).

PrX(x) =

∫ 2

y=0

PrX,Y (x, y) dy =
3x

16

∫ 2

y=0

y2 dy = x,

PrY (y) =
∫ 2

x=0

PrX,Y (x, y) dx =
3y2

16

∫ 2

x=0

x dx =
3

2
y2.

MORE CALCULATIONS

The general advice from section 3.3 applies here.

• First, try to work with equations involving random variables if you can; it’s always helpful to be
able to reduce the problem to equations that only involve simple independent random variables.

• Second, when working with continuous random variables, try working with cumulative distri-
bution functions if possible.

• If all else fails, the last resort is to work with density functions and integration. For pairs of
random variables, this means double integrals.

For continuous random variables, if we want to find the joint density, it’s usually easier to start with the
cumulative distribution function and differentiate. To see why this is true: the fundamental equation
for probabilities of joint random variables tells us that

P
(
X ≤ x and Y ≤ y

)
=

∫ x

x′=−∞

∫ y

y′=−∞
PrX,Y (x, y) dxdy

and so, differentiating,

PrX,Y (x, y) =
∂2

∂x ∂y
P
(
X ≤ x and Y ≤ y

)
.

Exercise 3.8 (Joint density of discrete r.v.).
For the rxy() function on page 43, find the joint distribution of (X,Y), and the marginal distri-
butions of X and Y .

3.4 Random tuples 45

Every outcome (x, y) ∈ {1, . . . , 6}2 is equally likely, except those where x = y which are impossible.
(We could wave our hands here and mumble “they are equally likely, by symmetry”, or we could
be ultra-formalistic and use the mathematical tools for Markov Chains from part 4.3.) So the joint
distribution is

1b is the indicator
function, for converting
from boolean to integer:
1true = 1, 1false = 0.PrX,Y (x, y) =

{
κ if x ̸= y, for some constant κ
0 if x = y

= κ1x ̸=y.

By the “densities sum to one” rule,

6∑
x=1

6∑
y=1

κ1x̸=y = 1 =⇒ κ =
1

30
.

The marginal distribution of X is

PrX(x) =
∑
y

PrX,Y (x, y) =

6∑
y=1

1

30
1y ̸=x =

5

30
=

1

6
,

hence X is uniformly distributed in {1, . . . , 6}, and likewise Y .

Exercise 3.9 (Findinding density by differentiation).
Let X and Y be independent Uniform[0, 1] random variables. Find P(|X − Y | < d). Hence
find the density of |X − Y |.

Because X and Y are independent their joint density is

PrX,Y (x, y) = PrX(x)PrY (y) = 1 for x, y ∈ [0, 1].

Then,

x

y

d
P
(
|X − Y | < d

)
=

∫
(x,y) : |x−y|<d

1 dx dy =

∫ 1

x=0

∫
y : |y−x|<d

1 dy dx = 1− (1− d)2

and the density of |X − Y | is Pr|X−Y |(d) = 2(1− d).

Exercise 3.10 (Joint density of continuous r.v.).
Consider the code

1 def rxy () :
2 x = random.random()
3 z = random.random()
4 y = z ∗ x
5 return (x , y)

Find the joint density of (X,Y).

The general advice says that to find the joint density of (X,Y) we should start by finding the joint
cumulative distribution functionP(X ≤ x, Y ≤ y). The general advice also says to start by rewriting
equations in terms of simple indendent random variables, if we can, which in this case are X and Z;
and then if all else fails to resort to integrals. We’ll follow this advice here. The equations are hairy,
but there’s nothing to them beyond basic integration and being absolutely meticulous about the limits

46 3.4 Random tuples

for the integrals. Let’s proceed: for x ∈ [0, 1] and y ∈ [0, 1],

P(X ≤ x and Y ≤ y) = P(X ≤ x and ZX ≤ y)

= P
(
(X,Z) ∈ {(x′, z) : x′ ≤ x and zx′ ≤ y}

)
=

∫
(x′,z) : x′≤x and zx′≤y

1x∈[0,1]1z∈[0,1] dx
′dz

=

∫ x

x′=0

∫ min(y/x′,1)

z=0

1 dzdx′ assuming x, y ∈ [0, 1]

=

∫ x

x′=0

min
(y

x′ , 1
)
dx′

=

∫ x

x′=0

{
1 if y > x′

y/x′ if y ≤ x′

}
dx′

=

{∫ x

x′=0
1 dx′ if y > x∫ y

x′=0
1 dx′ +

∫ x

x′=y
y/x′ dx′ if y ≤ x

=

{
x if y > x

y + y log(x/y) if y ≤ x.

In situations like this, where the limits depend on what’s being integrated, I like to write out all the
cases together in the equation, using lots of { braces. It’s a way to include all the “if statements” inside
the maths equation, rather than separating out the algebra and the conditions. It helps me refactor
freely. Here, for example, I rewrote the min(y/x′, 1) term as a case statement, then moved the case
statement outside the integral.

Now we can differentiate to find the joint density.

PrX,Y (x, y) =
∂

∂x

∂

∂y

{
x if y > x

y + y log(x/y) if y ≤ x

=
∂

∂x

{
0 if y > x

log(x/y) if y ≤ x

=

{
0 if y > x

1/x if y ≤ x

=
1

x
1y≤x.

Exercise 3.11 (Testing for independence).
I throw a fair die. Let Z be the result. Let X = Z mod 2 and let Y = Z div 3, so for example
Z = 3 gives X = 1 and Y = 1.

1. Show that X and Y are not independent.
2. Show that X ′ = (Z − 1) mod 2 and Y ′ = (Z − 1) div 2 are.

The definition gives a condition that has to be satisfied for all x and y. Let’s try some:

• Try x = 0, y = 0. The only way to get X = 0 and Y = 0 is if Z = 2, so P(X = 0, Y = 0) =
P(Z = 2) = 1/6. And P(X = 0) = 1/2 and P(Y = 0) = 1/3. So this pair passes the test.

• Try x = 0, y = 1. The only way to get X = 0 and Y = 1 is if Z = 4, so P(X = 0, Y = 1) =
P(Z = 4) = 1/6. But P(X = 0) = 1/2 and P(Y = 1) = 1/2. So the test fails.

Thus X and Y are not independent. An exhaustive test of all x and y shows that X ′ and Y ′ are
independent.

Exercise 3.12 (Identifying independence by factorization).
Suppose that PX,Y (x, y) = g(x)h(y) for some functions g and h. Show that X and Y are

3.4 Random tuples 47

independent, and
PrX(x) ∝ g(x), PrY (y) ∝ h(y).

∗ ∗ ∗

In probability theory, “independence” has a technical meaning involving terms of the density function:
X and Y are independent if

PrX,Y (x, y) = PrX(x)PrY (y) for all x, y.

In most situations this coincides with the general English meaning of the word, i.e. “unrelated” or
“not depending on one another”. But in the situation where there are unknown parameters, it’s easy
to be misled, as the following example illustrates.

Example 3.13. In the code

1 def rxy(p) :
2 # sample k = 2 independent Bin(1, p) random variables
3 x , y = random. choices ([0 ,1] , weights=[1−p,p] , k=2)
4 return (x , y)

the joint density of X and Y is

P(X = x, Y = y) = px(1− p)1−x py(1− p)1−y.

Obviously, learning the value of X tells us something about p (exercise: show that the maximum
likelihood estimator for p given X is p̂ = X); and the distribution of Y obviously depends on p;
so it’s reasonable to say thatX and Y are related—but nonetheless they are independent, because
that’s what random.choices does.

Whenever you hear “independent random variables”, it’s a good idea to whisper to yourself the coda
“given their parameters”, so you don’t confuse “unrelated” and “independent”.

48 3.5 Conditional random variables

3.5. Conditional random variables
The ‘learning’ in machine learning is ‘learning from data’. It’s important to be able to update a prob-
ability model in the light of data.

For example, suppose we’re modelling the climate with a simulator that reports two outputs, the
level of CO2, and some deep sea temperature reading. If we see that current CO2 levels are a certain
value 407.4 parts per million, how can we deduce the likely deep sea temperature? Or, if we want to
model a scenario where CO2 levels hit the range [500, 510], how can we predict what the sea level
temperatures are likely to be?

Here’s a toy example to illustrate how we might compute the latter case. Here X is the CO2
levels and Y is the deep sea temperature. This code simulates (X,Y), and if X doesn’t conform to
the scenario we want to consider it throws away the result and tries again.

1 # some simulator that produces (X,Y)

2 def rxy () :
3 x = random.random()
4 z = random.random()
5 return (x , x∗z)
6
7 # sample Y , conditional on X lying in the range [a, b].
8 def ry_given_xrange(a ,b) :
9 while True :
10 x , y = rxy ()
11 i f x >= a and x <= b:
12 break
13 return y

This is straightforward code. But its performance depends on how many (x, y) pairs have to be thrown
away—and in the extreme case, where we want to condition on an exact value for X , it is not a good
way to proceed. We need maths, not computation, to handle this.

In mathematical notation, we write (Y |C) to denote the random variable Y conditioned on an
event C. The distribution of Ỹ = (Y | C) is defined to be

P(Ỹ ∈ A) = P(Y ∈ A | C) for all sets A.

In the example above, if Ỹ is the random variable produced by ry_given_xrange(a,b), then we’d write
it as Ỹ = (Y |X ∈ [a, b]), and

P(Ỹ ∈ A) = P(Y ∈ A |X ∈ [a, b]).

The random variable (Y |C) is a proper random variable in its own right. For example, it has a density,
written as PrY (y | C) though perhaps it would be more logical to write it as Pr(Y | C)(y).

HANDLING CONDITIONAL RANDOM VARIABLES *

We can manipulate conditional random variables using all the tools described in section 3.3; just stick
on “conditional on C” onto all the probabilities.

For the purposes of this course, the only manipulation that matters is Bayes’s rule for random
variables, described in the next section. But for the sake of getting more comfortable with conditional
random variables, here is an example calculation, finding the conditional density. If Y is discrete it’s
straightforward—we just calculate PrY (y | C) using conditional probability,

PrY (y | C) = P(Y = y | C).

For continuous random variables we can find it by differentiating the cumulative distribution function,
as in section 3.3 page 41:

PrY (y | C) =
d

dy
P(Y ≤ y | C).

3.5 Conditional random variables 49

Exercise 3.14 (Conditional density for continuous r.v.).
Let X ∼ Exp(λ). Find the density of (X |X ≤ a).

The Exponential has
density
PrX(x) = λe−λx and
cumulative distribution
function P(X ≤ x) =

1 − e−λx. This and
other standard
distributions are listed in
the appendix, page 61.

PrX(x |X ≤ a) =
d

dx
P(X ≤ x |X ≤ a)

=
d

dx

P(X ≤ x and X ≤ a)

P(X ≤ a)
by defn. of conditional probability

=
d

dx

P
(
X ≤ min(x, a)

)
P(X ≤ a)

=
d

dx

1− e−λ min(x,a)

1− e−λa

=
d

dx

{
(1− e−λx)/(1− e−λ) if x ≤ a

(1− e−λa)/(1− e−λ) if x > a

=

{
λe−λx/(1− e−λa) if x ≤ a

0 if x > a.

It’s intuitively obvious that the density should be 0 for x > a, and it’s reassuring to see how this drops
out from the equations.

50 3.6 Bayes’s rule for random variables

3.6. Bayes’s rule for random variables
*** TODO: Graphical
diagram

A common problem in ‘learning from data’ is the following: we have a simulator that generates an
outputX , which is fed into another simulator that generates another output Y ; we make an observation
Y = y; and we want to deduce what X was. A classic application of this is interpreting medical tests,
and the way to solve it is with Bayes’s rule. Bayes’s rule says that for two events A and B, with
P(B) > 0,

P(A |B) =
P(A) P(B|A)

P(B)
=

P(A) P(B|A)

P(A)P(B|A) + P(¬A)P(B|¬A)
.

It derives from the definition of conditional probability,

P(A |B) =
P(A and B)

P(B)
.

Example 3.15 (Bayes’s rule for binary outcomes).
A screening test is 99% effective in detecting a certain disease when a person has the disease. The
test yields a ‘false positive’ for 0.5% of healthy persons tested. Suppose 0.2% of the population
has the disease. What is the probability that a person whose test is positive has the disease?

Let X ∈ {healthy, sick} be the true health of the person, and let Y ∈ {positive, negative} be the
outcome of the test. The question tells us about the distribution of Y conditional on X:

P
(
Y = positive |X = sick

)
= 0.99, P

(
Y = positive |X = healthy

)
= 0.005,

P
(
Y = negative |X = sick

)
= 0.01, P

(
Y = negative |X = healthy

)
= 0.995.

It also tells us about the distribution of X absent any diagnostic information:

P
(
X = sick

)
= 0.002, P

(
X = healthy

)
= 0.998.

Applying Bayes’s to the events A = {X = sick} and B = {Y = positive},

P(X = sick | Y = positive)

=
P(X = sick)P(Y = positive|X = sick)

P(X = sick)P(Y = positive|X = sick) + P(X = healthy)P(Y = positive|X = healthy)

=
0.002× 0.99

0.002× 0.99 + 0.998× 0.005
.

tl;dr. For two random variables X and Y , Bayes’s rule says that

PrX(x | Y = y) =
PrX(x)PrY (y |X = x)

PrY (y)
=

PrX(x)PrY (y |X = x)∫
x′ PrX(x′)PrY (y |X = x′) dx′ .

As usual, replace the integral by a sum for discrete random variables. Bayes’s rule derives from
the conditional density of X given {Y = y},

PrX(x | Y = y) =
PrX,Y (x, y)

PrY (y)
if PrY (y) > 0.

This is just a straightforward application of Bayes’s rule to the events A = {X = x} and B = {Y =
y}, in the case of discrete random variables. In the case of continuous random variables though,
P(B = 0), and so the standard version of Bayes’s rule doesn’t apply; it takes some extra subtlety to
prove Bayes’s rule for continuous random variables.

The integral version of the denominator comes from writing PrY as a marginal density and then
rewriting as a conditional probability:

PrY (y) =
∫
x

PrX,Y (x, y) dx =

∫
x

PrY (y |X = x)PrX(x) dx.

3.6 Bayes’s rule for random variables 51

3.6.1. APPLIED USING MATHEMATICS

In some rare situations, usually only seen in textbooks and exam questions, we can apply Bayes’s rule
using only mathematics. Typically we write it as

PrX(x | Y = y) = κ PrX(x) PrY (y |X = x) for some constant κ.

We could of course calculate κ as an integral. But sometimes we’re lucky and we don’t have to—as we
saw in section 3.2, the “densities sum to one” rule might let us work out κ without doing any calculus.

Exercise 3.16. Consider the pair of random variables (Θ, Y) where Θ ∼ Uniform[0, 1] and
(Y |Θ = θ) ∼ Binom(1, θ). In other words, for θ ∈ [0, 1] and y ∈ {0, 1},

PrΘ(θ) = 1, PrY (y |Θ = θ) =

{
θ if y = 1

1− θ if y = 0

Find the distribution of (Θ | Y = 1).

For θ ∈ [0, 1],
PrΘ(θ | Y = 1) = κ PrΘ(θ) PrY (1 |Θ = θ) = κ× 1× θ.

This is where it’s helpful to have out our fingertips a collection of standard random variables. The
Beta distribution Beta(a, b) has density

Pr(x) =
(
a+ b− 1

a− 1

)
xa−1(1− x)b−1 for x ∈ [0, 1].

The density we found for (Θ | Y = 1) is PrΘ(θ) = κθ, which is proportional to the density of a
Beta(2, 1) Since densities sum to one, there’s no wiggle room for κ—it must simply be the same as the
term at the front of Beta(2, 1). In conclusion, (Θ | Y = 1) is a Beta(2, 1) random variable.

3.6.2. APPLIED USING WEIGHTED MONTE CARLO

When working with random variables we often have a choice between exact calculations (often in-
volving integrals) and computational approximations (based on sampling). For example, for a contin-
uous random variable X , and any set A and any real-valued function h, if we have drawn a sample
(x1, . . . , xn) from X , then

This approximation is
Monte Carlo integration,
section 3.1

P(X ∈ A) =

∫
x∈A

PrX(x) dx ≈ 1

n

n∑
i=1

1xi∈A

Eh(X) =

∫
x∈A

h(x)PrX(x) dx ≈ 1

n

n∑
i=1

h(xi).

The purpose of Bayes’s rule is to find out about the conditional random variable X̃ = (X | Y = y).
And the message of sampling-based approximation is that if we can generate samples of X̃ then we
can learn whatever we like about its distribution. So, how can we sample from X̃?

Much work has been put into developing fast methods for sampling from conditional distribu-
tions. Such methods are covered in masters courses on advanced machine learning. Here is one simple
method, based on weighted samples. It isn’t the most efficient, but it’s easy to use and doesn’t depend
on advanced theory.

tl;dr. Suppose we have a sample (x1, . . . , xn) drawn from distribution X . To each value xi in
the sample, attach a weight

wi =
PrY (y |X = xi)∑n
j=1 PrY (y |X = xj)

.

Then, use a weighted version of Monte Carlo integration to approximate probabilities and expec-

52 3.6 Bayes’s rule for random variables

tations:

P(X ∈ A | Y = y) ≈
n∑

i=1

wi1xi∈A, E
(
h(X) | Y = y

)
≈

n∑
i=1

wih(xi).

Exercise 3.17. For the pair of random variables (Θ, Y) in exercise 3.16, write a function that
returns approximately P(Θ ≤ θ | Y = y), call it condprob(θ,y).

1 def condprob(θ ,y ,n=10000):
2 # Generate a sample of size n from the distribution of Θ
3 θsamp = numpy.random. uniform(low=0, high=1, s ize=n)
4 # Define weights wi proportional to PrY (y |Θ = θsampi)
5 w = (θsamp i f y==1 else 1−θsamp)
6 w = w / numpy.sum(w)
7 # Return the weighted sum

∑
wi1[θsampi ≤ θ]

8 return numpy.sum(w ∗ numpy.where(θsamp <= θ , 1 , 0))

Derivation *. You don’t need to know how to derive this approximation, you just need to know how
to use it. But it’s not very hard to derive: it comes simply from writing out the expectation we want
as an integral, and approximating it with Monte Carlo integration. As we noted in section 3.1, the
probability version is just the special case of h(x) = 1x∈A, so we’ll only derive the expectation
version.

E
(
h(X) | Y = y

)
=

∫
x

h(x)PrX(x | Y = y) dx by the definition of expectation

=

∫
x

h(x)κPrX(x)PrY (y |X = x) dx by Bayes’s rule, where κ is a constant

=

∫
x

g(x)PrX(x) dx where g(x) = h(x)κPrY (y |X = x)

= E g(X)

≈ 1

n

n∑
i=1

g(xi) by Monte Carlo integration.

The constant κ is there to make the conditional density sum to one:

κ = 1
/ ∫

x

PrX(x)PrY (y |X = x) dx

= 1
/ ∫

x

f(x)PrX(x) dx where f(x) = PrY (y |X = x)

= 1
/
E f(X)

≈ 1
/ 1

n

n∑
i=1

f(xi) by Monte Carlo integration.

Putting these two approximations together,

E
(
h(X) | Y = y

)
≈ 1

n

n∑
i=1

κh(xi)PrY (y |X = xi) ≈
∑n

i=1 h(xi)PrY (y |X = xi)∑n
i=1 PrY (y |X = xi)

53

4. Empirical methods
The word ‘empirical’ means ‘based from observation’. In classical Greece, there were two schools
of medicine, the empiric and the rational. Rational physicians held that treatments and explanations
of disease should be based on deduction from theoretical principles of how the body works. At that
time the standard theory was based on the four humours, blood, phlegm, yellow bile, and black bile.
Empirics on the other hand based their treatments on what they had seen to work in the past. The em-
piricists were considered to be inferior physicians, peddling in folk remedies (“my neighbour swears
by a frog skin to cure a sore throat, worn in a pouch around the neck”) without any real understanding
of the disease.

In this section we will look at probability models that take the dataset to be the ground truth.
This is as opposed to all the simulations and calculations in section 3, which take as their starting point
a piece of simulator code or a mathematical equation. In data science, as in any science, “all models
are wrong”10, and so it’s useful to see how far we can go without even writing down any simulator
code or mathematical description.

∗ ∗ ∗

From the point of view of this course, the concept of the empirical distribution (section 4.2)
is fundamental for frequentist inference in Part III, and it’s also the big idea behind cross-validation.
There’s virtually no maths, but the concept is subtle, hence the build-up (section 4.1).

10G. E. P. Box. “Robustness in the Strategy of Scientific Model Building”. In: Robustness in Statistics. Vol. 1. May 1979,
p. 40. URL: http://www.dtic.mil/docs/citations/ADA070213. Box has been described as “one of the great statistical
minds of the 20th century”. The full quotation:

All models are wrong but some are useful [...] there is no need to ask the question “Is the model true?” If
“truth” is to be the “whole truth” the answer must be “No”. The only question of interest is “Is the model
illuminating and useful?”

http://www.dtic.mil/docs/citations/ADA070213

54 4.1 The empirical cumulative distribution function

4.1. The empirical cumulative distribution function
Given a dataset of n numerical values (x1, x2, . . . , xn), the empirical cumulative distribution function
of the dataset is

F̂ (x) =
1

n

(
how many items there are ≤ x

)
.

This parallels the cumulative distribution function for a random variable X ,

F (x) = P(X ≤ x).

PLOTTING THE ECDF

It’s easy to plot the empirical distribution function: just sort the data and put it on the x-axis.

x

F̂ (x)

smallest 2nd
smallest

3rd
smallest

1/n

2/n

In Python, using matplotlib, here is code to plot a histogram and the ecdf.
The convention for
matplotlib plotting is to
import
matplotlib.pyplot as
plt

1 x = [. . .] # the dataset, stored as a list
2 ef = numpy. arange(1 , len (x)+1)/len (x)
3 f ig , (ax1 ,ax2) = plt . subplots (1 ,2 , f i g s i ze =(8,4))
4 ax1 . hist (x , bins=50)
5 ax2 . plot (numpy. sort (x) , ef , drawstyle=’ steps−post ’)
6 plt .show()

What’s nice about the ecdf, as opposed to a histogram, is that it shows every single datapoint and it
doesn’t rely on an arbitrary choice of bin size. Also, if you want to show more detail for example by
using a log scale, you don’t need to mess around with bothersome details like “do I take the log before
or after binning?”

WHAT A GOOD FIT LOOKS LIKE

If a particular random variable X truly were the distribution from which the xi were drawn, then we’d
expect F (x) ≈ F̂ (x). (This can be justified in several ways. For example, from the Monte Carlo
method for approximating a probability,

P(X ≤ x) ≈ 1

n

n∑
i=1

1xi≤x.

In this approximation, the left hand side is F (x) and the right hand side is F̂ (x).)
Here’s an illustration, 20 random samples each of size 50 drawn from the Beta(10, 5) distribu-

tion. For each sample we plot its empirical distribution.
Beta distribution:
appendix page 63

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 sample
true dist

1 α ,β = 10,5
2 f ig , ax = plt . subplots (f ig s i ze =(6,4))

4.1 The empirical cumulative distribution function 55

3
4 # Plot the ecdf, 20 times
5 for _ in range(20):
6 x = numpy.random. beta(α , β , s ize=50)
7 ef = numpy. arange(1 , len (x)+1)/len (x)
8 plt . plot (numpy. sort (x) , ef , alpha=0.5, color=’ f i rebr ick ’ , linewidth=.5)
9 # A hack to force a legend entry for the samples
10 plt . plot ([] , [] , color=’ f i rebr ick ’ , linewidth=.6, label=’sample ’)
11
12 # Plot the true cdf
13 x = numpy. linspace (0,1,1000)
14 f = scipy . stats . beta . cdf(x , alpha , beta)
15 plt . plot (x , f , color=’black ’ , l i nes ty l e=’dotted ’ , linewidth=2.5, label=’ true dist ’)
16
17 plt . legend(bbox_to_anchor=(1.05, 1) , loc=2, frameon=False)
18 plt .show()

56 4.2 The empirical distribution

4.2. The empirical distribution
If we’re programming a simulator as a model of some real-world system, we’ll want to use random
number generators that are a good fit for real-world data. Here’s a simple way to do this:

tl;dr. Given a dataset (x1, . . . , xn), let X∗ be the random variable obtained by picking one of the
xi at random. This is a discrete random variable taking values in {x1, . . . , xn}. Its distribution
is

P(X∗ ∈ A) =
1

n

(
number of datapoints xi that are ∈ A

)
or equivalently

PrX∗(x) =
1

n

(
number of datapoints xi that are equal to x

)
.

This is called the empirical distribution of the dataset.
In Python, generate a single value from X∗ with random.choice(x) and generate k independent
values with

numpy.random.choice(x, replace=True, size=k)

The empirical distribution is a perfect fit to the dataset. Consider the cumulative distribution function11

for X∗: it’s simply

P(X∗ ≤ x) =
1

n

(
number of datapoints xi that are ≤ x

)
.

This is precisely the same as the empirical cumulative distribution function for the dataset, F̂ (x),
defined in section 4.1. We suggested in that section that a good-fitting distribution is one whose cdf
matches the ecdf; by that criterion X∗ is perfect.

EMPIRICAL OR PARAMETRIC MODELLING?

We saw a different approach for fitting a random number generator in section 1.5. The approach in
that section was (1) pick a family of random variables, one that has parameters; (2) use maximum
likelihood estimation to estimate the parameters, so as to fit the dataset. The empirical approach is (1)
use the empirical distribution, (2) that’s it.

When should we use parametric models and when should we use the dataset itself? There are
no general rules.

• If all we have is a dataset, and no one has told us which family of random variables to use, isn’t
it daft to shoehorn ourselves into some standard random variable—especially when a perfect fit
to the data is staring us in the face, namely the empirical distribution?
Conversely, if we have general scientific knowledge about the domain we’re trying to model,
and if that knowledge tells us what family of random variables is appropriate, then it makes
perfect sense to use a parametric model.

• A dataset cannot tell us about values beyond the dataset. This has to come from our background
knowledge or intuition. If we believe that values beyond the dataset are plausible, then we need
to find a way to express this belief as a parametric model.

• A parametric distribution saves space: it only needs us to store a handful of parameters, rather
than the full dataset.
But this is often a premature optimization. For a small dataset of a few tens of thousands of
values, on a modern computer, you should spend your time thinking about modeling and not

11This argument, based on the cumulative distribution function, only makes sense for numerical data. However, the definition
of X∗ applies to random variables taking values in any set. See section 4.3 for a discussion of how to measure closeness of
distributions for arbitrary random variables.

4.2 The empirical distribution 57

about optimizing storage. For a large dataset, a model with a handful of parameters cannot hope
to capture the richess of the data.

• Neural networks are parametric models. A neural network trained for simple image classifica-
tion might take 140 million parameters, one for each connection in the network. The human
brain has roughly 1015 connections, and a human lifetime is roughly 2.5×109 seconds. It seems
that making sense of data is more about what you do with it than how you can compress it.
High-dimensional modeling, i.e. modeling with more parameters than there are samples in the
dataset, is an area of active research.

MONTE CARLO AND THE EMPIRICAL DISTRIBUTION

Monte Carlo integration is a way to approximate an expectation,

Eh(X) ≈ 1

n

n∑
i=1

h(xi)

where x1, . . . , xn is a sample drawn from distribution X and h is some arbitrary real-valued function.
Equivalently, if we let X∗ be a random value drawn from the sample,∫

x

h(x)PrX(x) dx ≈
∑
x

h(x)PrX∗(x) = Eh(X∗).

In other words, Monte Carlo approximation consists in replacing the distribution of a random variable
X with the empirical distribution of a sample drawn from X .

THE ZEN OF DATA SCIENCE *

The zen of data science is in seeing datasets and random variables as two sides of the same coin.

• When the true distribution is intractable, we can approximate it by the empirical distribution
of a random sample. Instead of getting bogged down with integrals, we just use Monte Carlo
integration.

• When the true distribution is unknown, we can use the dataset’s empirical distribution instead.
There’s no need to approximate the dataset by fitting a standard random variable, when we can
just pick items randomly from the dataset.

An earlier example gave code for computing the “marginal distribution of survival on the Ti-
exercise 3.6 page 43

tanic”. But a dataset is a collection of numbers, not a random variable, and it is only random variables
that have distributions—so what was the example asking for?

Behind the code there is a very subtle idea. When we talk about the “distribution” of a col-
lection of values, what we’re actually referring to is the empirical distribution. Similarly, when we
talk about the “variance” of a collection of numbers, we mean the variance of a random X∗ drawn
from that collection. Or if we want to know whether gender and survival on the Titanic were indepen-
dent, we have to imagine picking a random individual from the dataset, extracting the random tuple
(Gender∗,Survival∗) for that individual, and asking whether the two parts are independent.

58 4.3 Goodness of fit and KL divergence *

4.3. Goodness of fit and KL divergence *
In generative modelling, section 1.5, we start with a dataset and we look for a probability distribution
that might have generated it. Typically we restrict our search to a family of distributions that has one
or more tuneable parameters; selecting the best-fitting parameter is called ‘fitting the distribution’.

How should we measure the goodness of the fit? As in any engineering task we ought to invent
some sensible metric, because otherwise we have no way of judging whether we’ve been successful.
There is one metric that you’re likely to come across in advanced machine learning, the Kullback-
Leibler divergence.

*** TODO: pic

tl;dr. Let PrX∗(x) be the density of the empirical distribution of a dataset, and let PrX(x | θ)
be the proposed generative distribution, with parameter θ. The KL divergence from PrX∗(·) to
PrX(· | θ) is

KL
(

PrX∗(·)
∥∥∥ PrX(· | θ)

)
=

∑
x

PrX∗(x) log
PrX∗(x)

PrX(x | θ)

where the sum is over the support of X∗, i.e. over the values in the dataset.
(The definition can be applied to any pair of distributions, though for this course we only care
about the case where X∗ is the empirical distribution of a dataset. In the general case, if X∗ is
a continuous random variable, replace the sum by an integral.)

This intimidating-looking equation, it turns out, is nothing more than log likelihood dressed up in
fancy clothing. Before explaining where it comes from, let’s do a sanity check on the equation.

• The KL divergence is in the range [0,∞). There’s a slick algebraic proof that you can find
online (search for the key phrase “Jensen’s inequality”). For the intuitive reason, see below.

• If it’s a perfect fit, i.e. if PrX(x) = PrX∗(x) for all x, then KL = 0.
• If there are some datapoints in the dataset for which PrX(x) = 0 then the denominator is zero

and we take KL to be ∞.

WHERE DOES IT COME FROM?

All the probabilistic learning techniques from section 1 are based on likelihood, which is nothing more
than the probability of observing the dataset. Let the dataset be (x1, . . . , xn), and to streamline the
notation define

px = PrX(x | θ), qx = PrX∗(x), nx = nqx = number of occurrences of x.

The likelihood of the dataset, assuming it consists of independent samples from X , is

log likX = log
(n∏
i=1

PrX(xi)
)
=

n∑
i=1

log pxi
=

∑
x

nx log px.

This isn’t ideal as a metric of how good a fit X is, because it is O(n). A better metric comes from
rescaling,

1

n
log likX =

∑
x

qx log px.

Furthermore, it’s useful to have a reference point. The best possible fit to a dataset is its empirical
distribution, so a sensible reference point is

1

n
log likX∗ =

∑
x

qx log qx.

The KL divergence is simply the difference between these two,

KL(q ∥ p) =
1

n
log likX∗ − 1

n
log likX =

∑
x

qx log
qx
px

The perfect fit is when X ∼ X∗, giving divergence 0. The worse the fit, the smaller likX will be, and
so the bigger the divergence.

https://stats.stackexchange.com/questions/335197/why-kl-divergence-is-non-negative
https://stats.stackexchange.com/questions/335197/why-kl-divergence-is-non-negative

4.3 Goodness of fit and KL divergence * 59

Appendix

60

A. Standard random variables
A.1. Python library commands
In Python, numpy and scipy.stats have useful functions for working with random variables. They have
a consistent naming convention, shown here for the Normal distribution.

numpy.random.normal(..., size=n)
Generate n independent random variables from the Normal distribution. The ... are parameters,
different for each distribution.

scipy.stats.norm.pdf(x=x, ...)
the probability density function Pr(x)

scipy.stats.norm.cdf(x=x, ...)
the cumulative distribution function P(X ≤ x)

scipy.stats.norm.ppf(q=q, ...)
the inverse of the cumulative distribution function, returns x such that P(X ≤ x) = q;
for discrete random variables, when cdf jumps up in steps, returns min{x : P(X ≤ x) ≥ q}

scipy.stats.norm.mean(...), median, var, std
summaries of the distribution

Data science computation often involves small probabilities, so watch out for bugs arising from nu-
merical overflow and underflow. It’s usually a good idea to work with log probabilities and with the
survival function sf(x) = P(X > x).

scipy.stats.norm.logpdf(x, ...)
log Pr(x)

scipy.stats.norm.logcdf(x, ...)
logP(X ≤ x)

scipy.stats.norm.sf(x, ...), logsf
P(X > x) and logP(X > x)

A.2 List of common random variables 61

A.2. List of common random variables

Geometric: If we’re playing a lottery, and each week the chance of winning is p, then our first win
happens on week X ∼ Geom(p). This random variable takes values in {1, 2, . . . , n}, and

P(X = r) = (1− p)r−1p, P(X ≥ r) = (1− p)r−1.

Mean 1/p, variance (1− p)/p2. In Python, numpy.random.geometric(p).

Exponential: The Exponential random variable is a continuous-time version of the Geometric. It’s used
to model the time until an event, for many natural processes: for example the time until a lump of
radioactive matter emits its next particle, or the time until a lightbulb blows, or the time until the next
web request arrives. If X ∼ Exp(λ) then it takes values in [0,∞), and

Pr(x) = λe−λx, P(X ≥ x) = e−λx.

The parameter λ is called the rate. The chance of an event in a short interval of time [t, t+ δ] is

P(X ≤ t+ δ |X ≥ t) =
P(X ∈ [t, t+ δ])

P(X ≥ t)
=

∫ t+δ

t
λe−λx dx

e−λt
≈ δλ.

Mean 1/λ, variance 1/λ2. In Python, numpy.random.exponential(scale=1/λ).

Binomial: If we toss a biased coin n times, and each coin has chance p of heads, the total number of
heads is X ∼ Binom(n, p). This random variable takes values in {0, 1, . . . , n}, and

P(X = r) =

(
n

r

)
pr(1− p)n−r.

When n = 1, i.e. a single coin toss, it’s called a Bernoulli random variable.

Mean np, variance np(1− p). In Python, numpy.random.binomial(n,p).

Multinomial: If we haven individuals each of whom falls into one ofK categories, and the probability of
falling into category k is pk, then the total number in each category is a multivariate random variable
X ∼ Multinom(n, p). It takes values in {0, 1, . . . , n}K , and

P(X = x) =
n!

x1!x2! · · ·xK !
px1
1 px2

2 · · · pxK

K .

(The binomial distribution is the special case when k = 2.)

In Python, numpy.random.multinomial(n,p).

Poisson: The random variable X ∼ Poisson(λ) takes values in {0, 1, . . . }, and

P(X = r) =
λre−λ

r!
.

Suppose we’re counting the number of events in a fixed interval of time, for example the number of
buses passing a spot on the street, or the number of web requests, or the number of particles emitted
by a lump of radioactive matter. If the time between events is Exp(λ), then the total number of events
in time t is X ∼ Poisson(λt).

Mean λ, variance λ. In Python, numpy.random.poisson(lam=λ).

62 A.2 List of common random variables

Normal / Gaussian: This distribution is a very popular choice for data analysis because it’s often a good
model for things that are the aggregate of many small pieces, for example height which is the aggregate
of many influences from genetics and the environment. It’s also easy to do probability calculations
with it. If X ∼ Normal(µ, σ2), then X is a continuous random variable taking values in the entire
real line, and

Pr(x) =
1√
2πσ2

e
−(x−µ)2

2σ2 , EX = µ, VarX = σ2.

There is also a multivariate version, called the multivariate normal. Here are some useful facts about
the Normal distribution. If X ∼ Normal(µ, σ2), and Y ∼ Normal(ν, ρ2) is independent, and a and b
are real numbers, then

P
(
µ− 1.96σ ≤ X ≤ µ+ 1.96σ

)
= 95%

aX + b ∼ Normal(aµ+ b, a2σ2)

(X − µ)/σ ∼ Normal(0, 1)
X + Y ∼ Normal

(
µ+ ν, σ2 + ρ2

)
In Python, numpy.random.normal(loc=µ, scale=σ), and watch out for σ versus σ2!

Pareto and lognormal: Some natural phenomena, like sizes of forest fires, or insurance claims, or In-
ternet traffic volumes, or stock market crashes, have the characteristic that there are events of wildly
different sizes. This tends to cause problems for simulations and forecasting, since the entire outcome
can hinge on one ‘black swan’ event12. A common random variable with this characteristic is the
Pareto distribution, X ∼ Pareto(α), named after the Italian economist Vilfredo Pareto who studied
extreme wealth inequality. It is a continuous random variable taking values in [1,∞), and

Pr(x) = αx−(α+1), P(X ≥ x) = x−α.

The mean and variance become ∞ for small α,

EX =

{
∞ if α ≤ 1

α/(α− 1) otherwise,
VarX =

{
∞ if α ≤ 2

α / (α− 1)2(α− 2)2 otherwise.

For α < 2 it tends to produce many small values (‘mice’) and very occasional huge values (‘ele-
phants’). To illustrate, here are some samples drawn from three different distributions, all with mean
value 1.

X ∼ Exp(1),
EX = 1

X ∼ α−1
α Pareto(α)

with α = 5,
EX = 1

X ∼ α−1
α Pareto(α)

with α = 1.1,
EX = 1

The lognormal distribution X ∼ eN(µ,σ2) has similar characteristics to the Pareto but is not quite as
extreme. It was invented by the Cambridge senior wrangler and medic Donald MacAlister.

Zipf: The random variable X ∼ Zipf(n, s) takes values in {1, 2, . . . , n} and

P(X = r) =
r−s

1 + 2−s + · · ·+ n−s
.

It is named after the American linguist Goerge Zipf, who used it to describe frequencies of words in
texts. Take a large piece of text, and count the number of occurrences of each word, and rank the

12Nassim Nicholas Taleb. The Black Swan: The Impact of the Highly Improbable. 2nd ed. Random House, 2010.

A.2 List of common random variables 63

words from most common to least common. Say that the most common word has rank 1, the next
most common has rank 2, and so on. Zipf observed that the number of occurrences of the rth ranked
word is roughly const × r−s where s ≈ 1 in English texts. Another way of putting this: if we pick
a word at random from the entire body of text, then the rank of that word is Zipf(n, s), where n is
the size of the vocabulary. The same phenomenon happens with cities: if we take a person at random
from the entire population, and look at which city they come from, and rank cities by size, then the
rank of that person’s city is Zipf(n, s) where n is the number of cities and s is roughly 1.07.

There is a direct link between the Pareto(α) and Zipf(n, 1/α) distributions. First, create a
‘pseudo-random’ sample ofn city sizes, to match the Pareto(α) distribution. Make the largest city have
size x(1) such that x−α

(1) = 1/N , make the second-largest city have size x(2) such that x−α
(2) = 2/N , etc.

This is a deterministic equivalent of the Pareto(α) distribution, in which P(X ≥ x) = x−α. Then,
the city of rank r has size const × r−1/α, which fits with Zipf(n, 1/α).

Beta: If we toss a biased coin n times, and each coin has chance p of heads, then the number of heads
has a Bin(n, p) distribution. In Bayesian inference, a common prior distribution for p is Beta(α, β).
It takes values in (0, 1), and has parameters α > 0 and β > 0, and density

Pr(p) =
(
α+ β − 1

α− 1

)
pα−1(1− p)β−1

(but with a generalized form of the binomial coefficient when α and β are non-integer). It has mean
α/(α+ β), and the rough interpretation is “I’ve seen α heads and β tails”.

In Python, numpy.random.beta(a=α, b=β).

Dirichlet: The Dirichlet distribution Dir(α) is a generalization of the Beta distribution. Instead of two
categories (heads and tails), it allows K ≥ 2 categories, and α is a vector in RK . It is a continuous
random variable, and it takes values in

Ω =
{
[x1, . . . , xK] ∈ (0, 1)K : x1 + · · ·+ xK = 1

}
.

In other words, it generates probability distributions over the K categories. It is used in Bayesian
inference to describe belief about a multinomial distribution, and the rough interpretation is “I’ve
seen αk items in category k”. Its density function is

Pr
(
[x1, . . . , xK]

)
∝ xα1−1

1 xα2−1
2 · · ·xαK−1

K .

In Python, numpy.random.dirichlet(alpha=α).

Gamma: The Gamma distribution X ∼ Γ(k, λ) is a continuous random variable taking values in [0,∞),
and its parameters are k > 0 and λ > 0. It arises in two places: it’s the sum of k independent Exponen-
tial random variables; and it’s a common choice of prior distribution for 1/σ2 in Bayesian calculations
with Normal(µ, σ2) random variables. (Engineers call 1/σ2 the ‘precision’.) It has density

Pr(x) =
λkxk−1e−λx

(k − 1)!

(but with (k − 1)! replaced by the gamma function Γ(k) for non-integer k).

Mean kλ, variance k/λ2. In Python, numpy.random.gamma(shape=k, scale=1/λ).

64

B. Abstract linear mathematics
B.1. Definitions and useful properties

• Let V be a set whose elements are called vectors, denoted by Roman letters13 u, v, w, etc.
• Let F be a field whose elements are called scalars, denoted by Greek letters λ, µ, etc. For our

purposes, take F to be either the real numbers or the complex numbers.
• Let there be a binary operation V × V → V , called addition, written v + w.
• Let there be a binary operation F × V → V , called scalar multiplication, written λv.
• Let there be a binary operation V × V → F , called inner product, written v · w.

Vector space. V is called a vector space over F if the following properties hold:

1. Associativity: (u+ v) + w = u+ (v + w) for all vectors u, v, w.
2. Commutativity: u+ v = v + u for all vectors u, v
3. Zero vector: there is a vector 0 such that v + 0 = v for all vectors v
4. Inverse: for every vector v there is a vector denoted −v such that v + (−v) = 0

5. λ(v + w) = λv + λw for every scalar λ and vectors v, w
6. (λ+ µ)v = λv + µv and (λµ)v = λ(µv) for all scalars λ, µ and vector v
7. 1v = v for every vector v, where 1 is the unit scalar (i.e. 1λ = λ for every scalar λ).

Linear combinations and bases. Let v1, . . . , vn be vectors in a vector space and λ1, . . . , λn be scalars.
Then the vector λ1v1 + · · ·+ λnvn is called a linear combination of v1, . . . , vn. The set of all linear
combinations

S =
{
λ1v1 + · · ·+ λnvn : λi ∈ F for all i

}
is called the span of {v1, . . . , vn}, and the vectors vi are said to span S. Clearly S ⊆ V , and it is not
hard to check that S is also a vector space. It is called a subspace of V .

Vectors v1, . . . , vn in a vector space are said to be linearly independent if

λ1v1 + · · ·+ λnvn = 0 =⇒ λ1 = · · · = λn = 0.

If this is not the case, then they are said to be linearly dependent.
If there is a finite set of vectors e1, . . . , en that span a vector space V , and they are linearly

independent, then they are called a basis for V . It can be shown that any two bases for a vector space
must have the same number of elements; this number is called the dimension of the vector space.

Given a basis {e1, . . . , en} of a vector space, it can be proved that any vector x can be uniquely
written as

x = λ1e1 + · · ·+ λnen for some scalars λ1, . . . , λn.

The n-tuple (λ1, . . . , λn) is called the coordinates of x with respect to the given basis. If we pick a
different basis we’ll get different coordinates, but of course the vectorx itself is still the same regardless
of the basis.

Inner products and orthogonality. Consider a vector space V over the field of real numbers. It is
said to be an inner product space if the inner product satisfies these properties:

8. v · v ≥ 0 for all vectors v, and v · v = 0 if and only if v = 0

9. (λu+ µv) · w = λ(u · w) + µ(v · w) for all vectors u, v, w and scalars λ, µ
10. v · w = w · v for all vectors v and w

An inner product space over the field of complex numbers is defined similarly, except that condition 10
is replaced by v · w = w · v where λ is the complex conjugate of the complex number λ. Also, the
first part of condition 8 should be interpreted as Im(v · v) = 0 and Re(v · v) ≥ 0.

Two vectors v and w in an inner product space are said to be orthogonal if v · w = 0. A set of
vectors (which may be finite or infinite) is said to be an orthogonal system if every pair of vectors in
the set is orthogonal and in addition none of them is equal to 0.

The Euclidean norm for an inner product space is

∥v∥ =
√
v · v.

13In introductory geometry it’s common to use bold symbols for vectors, e.g. v+ 0 = v and 1v = v. This notation makes it
clear that 0 is a vector and 1 is a scalar. The bold notation is less common in more advanced applications, so you have to rely
on type inference to spot that 0 is a vector and 1 is a scalar.

B.1 Definitions and useful properties 65

A vector v with ∥v∥ = 1 is called a unit vector. An orthogonal system is said to be an orthonormal
system if every vector in it is a unit vector.

Useful properties. Here are some useful properties that can be proved from the abstract definitions.
They are mostly obvious when we’re working with finite dimensional Euclidean space. For abstract
vector spaces, they must be proved directly from the defining properties 1–10. The proofs are just
careful definition-pushing, but it’s reassuring to know that it can be done.

11. 0v = 0, for every vector v in a vector space.
12. (−λ)v = −(λv), for every vector v in a vector space and every scalar λ.
13. (λv) · w = λ(v · w), for all scalars λ and vectors v, w in an inner product space.
14. 0 · v = 0, for every vector v in an inner product space.
15. For all n and all scalars λ1, . . . , λn and vectors v1, . . . , vn, w in an inner product space,(n∑

i=1

λivi

)
· w =

n∑
i=1

λi(vi · w).

16. If {e1, . . . , en} is an orthonormal system in an inner product space, then for every vector x in
the span of {e1, . . . , en}, the coordinates of x are given by

x =

n∑
i=1

(x · ei) ei.

17. ∥u+ v∥ ≤ ∥u∥+ ∥v∥ for all vectors u, v; this is known as the triangle inequality.

Exercise B.1. Prove useful property 11

In this equation, the left hand side must be referring to the scalar 0 ∈ F and the right hand side to the
vector 0 ∈ V , where V is the vector space over field F , because otherwise the equation doesn’t make
sense—the abstract definitions don’t define multiplication of vectors, and scalar multiplication yields
a vector.

In both the real numbers and the complex numbers (and indeed in any field F), 0 = 0 + 0. So,
by property 6,

0v = (0 + 0)v = 0v + 0v.

By property 4, there is some vector −(0v) such that 0v +
(
−(0v)

)
= 0. Adding this to each side of

the equation,
0v +

(
−(0v)

)
=

(
0v + 0v

)
+

(
−(0v)

)
and so, using property 1,

0 = 0v +
(
0v + (−(0v))

)
= 0v + 0.

Finally, by property 3,
0 = 0v.

Exercise B.2. Prove useful property 12

Property 6 says that
λv + (−λ)v =

(
λ+ (−λ)

)
v.

In both the real numbers and the complex numbers (and indeed in any field F), λ + (−λ) = 0 ∈ F ,
thus

λv + (−λ)v = 0v

which we showed in the previous exercise to be equal to 0 ∈ V . So (−λ)v satisfies property 4 and it
is therefore −(λv).

66 B.1 Definitions and useful properties

Exercise B.3. Prove useful property 13

(λv) · w =
(
(λ+ 0)v

)
· w since λ = λ+ 0 ∈ F

= (λv + 0v) · w by property 6
= λ(v · w) + 0(v · w) by property 9
= λ(v · w) since 0µ = 0 ∈ F.

B.2 Orthogonal projection and least squares 67

B.2. Orthogonal projection and least squares

The Projection Theorem. Let V be an inner product space, let {e1, . . . , en} be a finite collection
of vectors, and let S be the subspace spanned by these vectors. Given a vector x ∈ V , there is a
unique vector x̃ that is closest to x, i.e. that solves14

min
x′∈S

∥x− x′∥2.

Furthermore, x− x̃ is orthogonal to S, i.e.

(x− x̃) · y = 0 for all y ∈ S.

The vector x̃ is called the orthogonal projection of x onto S, and x− x̃ is called the residual.

If the ei are linearly independent, i.e. if they form a basis for S, then we can find the coordinates
of x̃ with respect to the ei, and the coordinates are unique. If the ei are linearly dependent, then
there are multiple ways to write x̃ as a linear combination of the ei.

Example B.4 (Closest point via calculus).
Let e1 = [1, 1, 0], let e2 = [1, 0,−1], and let x = [1, 2, 3]. Find the closest point to x in the span
of {e1, e2}. Show that the residual is orthogonal to S.

Just write out the optimization problem we want to solve:

min
λ1,λ2

∥∥x− (λ1e1 + λ2e2)
∥∥2.

We can compute the solution numerically:

1 e1 ,e2 ,x = np. array ([1 ,1 ,0]) , np. array ([1 ,0 ,−1]) , np. array ([1 ,2 ,3])
2 λ1 ,λ2 = scipy . optimize . fmin(lambda λ : np. l ina lg .norm(x−λ[0]∗e1−λ[1]∗e2) , [0 ,0])
3 λ1∗e1 + λ2∗e2 # outputs: array([0.33332018, 2.66666169, 2.33334151])

Or we can try algebra. Expanding the definition of ∥·∥, we want to minimize

x·x− 2
(
λ1 x·e1 + λ2 x·e2

)
+
(
λ2
1 e1 ·e1 + 2λ1λ2 e1 ·e2 + λ2

2 e2 ·e2
)
.

Differentiating with respect to λ1 and λ2 and setting the derivatives equal to 0,

∂

∂λ1
= 0 : − 2x·e1 + 2λ1 e1 ·e1 + 2λ2 e1 ·e2 = 0

∂

∂λ2
= 0 : − 2x·e2 + 2λ1 e1 ·e2 + 2λ2 e2 ·e2 = 0

(2)

or equivalently

λ1 e1 ·e1 + λ2 e1 ·e2 = x·e1
λ1 e1 ·e2 + λ2 e2 ·e2 = x·e2.

We can compute the solution to these equations:

1 e1 = numpy. array ([1 ,1 ,0])
2 e2 = numpy. array([1 ,0 ,−1])
3 x = numpy. array ([1 ,2 ,3])
4 λ1 ,λ2 = numpy. l ina lg . solve ([[e1@e1 , e1@e2] , [e1@e2 , e2@e2]] , [x@e1 , x@e2])
5 λ1∗e1 + λ2∗e2 # array([0.33333333, 2.66666667, 2.33333333])

14Mathematicians prefer to write inf rather than min in equations like this, where the minimum is being taken over an infinite
set and it hasn’t yet been established that the minimum is attained.

68 B.2 Orthogonal projection and least squares

For geometrical insight, rearrange equations (2) to get(
x− (λ1e1 + λ2e2)

)
· e1 = 0(

x− (λ1e1 + λ2e2)
)
· e2 = 0

In other words, the residual is orthogonal to e1 and to e2, and hence it’s orthogonal to every linear
combination of e1 and e2.

Example B.5 (Closest point via explicit projection).
Let x = [1, 2, 3], and let x̃ be the projection onto the subspace spanned by e1 = [1, 1, 0] and
e2 = [1, 0,−1]. Create an orthonormal basis out of {e1, e2}, and thence find the coordinates of
x̃ with respect to the basis {e1, e2}.

Hint: first use Useful Property 16 on page 65 to get the coordinates of x̃ in the orthonormal
basis.

First create the orthonormal basis. Start by setting f1 to be a unit vector in the same direction as e1:

f1 =
e1
∥e1∥

.

Next, construct f2 by subtracting the part that’s parallel to f1:

e1

e2

(e2 ·f1)f1

f′2

f ′
2 = e2 − (e2 ·f1)f1, f2 =

f ′
2

∥f ′
2∥

.

This construction ensures that f ′
2 ·f1 = 0 therefore f2 ·f1 = 0, and it also ensures that both f1 and f2

are unit vectors. We’ve written f1 and f2 as linear combinations of e1 and e2, and it’s easy to check that
e1 and e2 can be written as linear combinations of f1 and f2, thus span{e1, e2} = span{f1, f2} = S.
Thus, {f1, f2} is an orthonormal basis for S.

Useful Property 16 now tells us exactly what the coordinates are for x̃:

x̃ = (x̃·f1)f1 + (x̃·f2)f2.

Furthermore, the Projection Theorem tells us that the residual is orthogonal to S = span{f1, f2},
which means (x− x̃) · f1 = (x− x̃) · f2 = 0, thus

x̃ = (x·f1)f1 + (x·f2)f2.

which with some algebra can be rewritten in terms of e1 and e2. In numpy,

6 f1 = e1 / numpy. l ina lg .norm(e1)
7 f ′2 = e2 − (e2@f1) ∗ f1
8 f2 = f ′2 / numpy. l ina lg .norm(f ′2)
9
10 # x̃ in original coordinate system
11 (x@f1)∗ f1 + (x@f2)∗ f2 # array([0.33333333, 2.66666667, 2.33333333])
12
13 # x̃ in terms of e1 and e2
14 g1 = numpy. array ([1 ,0]) / numpy. l ina lg .norm(e1)
15 g2 = numpy. array([−(e2@f1)/numpy. l ina lg .norm(e1) , 1]) / numpy. l ina lg .norm(f ′2)
16 (λ1 ,λ2) = (x@f1)∗g1 + (x@f2)∗g2
17 λ1∗e1 + λ2∗e2 # array([0.33333333, 2.66666667, 2.33333333])

∗ ∗ ∗

Colinearity andmatrix rank. In Euclidean space, if we have a collection of vectors and we stack them
to form a matrix, then the rank of the matrix is the dimension of the space spanned by those vectors.
In Python, use numpy.linalg.matrix_rank(numpy.column_stack([e1,e2])).

In this example, we projected onto basis vectors e1 and e2 that were linearly independent. What
happens if we project onto a collection of linearly dependent vectors, e.g. if e2 = αe1? The Projection
Theorem doesn’t assume linear independence, so the overall result still holds: there is still a unique
projection x̃. The explicit projection method would still work, but it would give f ′

2 = 0, so we’d just
discard that vector from the orthonormal basis. Equations (2) would still be correct, but they would
have multiple solutions for λ1 and λ2.

B.3 Advanced application: Fourier analysis * 69

B.3. Advanced application: Fourier analysis *
In this course on data science, the only vector space we’re interested in is a simple finite-dimensional
Euclidean space over the real numbers. Before returning to data science, and to illustrate that there’s
some merit in defining vector spaces abstractly, here’s an advanced application—a step on the way to
Fourier analysis.

Inner product space. LetV consist of all continuous complex-valued functions on the interval [−π, π].
Define addition of functions in the obvious way, define multiplication by a complex number in the
obvious way, and define the inner product to be

f · g =
1

π

∫ π

−π

f(τ)g(τ) dτ.

It is easy to check that properties 1–7 are satisfied, i.e. that this is a vector space over the field of
complex numbers. Using some standard results about integration one can also show that properties 8–
10 are also satisfied, therefore this is an inner product space. (A typical result: if f is a continuous
function, then it is integrable over a finite interval.)

Orthonormal system. Every vector in V is a continuous function. Consider the vectors

{e1, e2, . . . } =

{
1√
2
, cos(τ), sin(τ), cos(2τ), sin(2τ), cos(3τ), . . .

}
.

(The first element 1/
√
2 is a way of writing the constant function f(τ) = 1/

√
2.) With some A-level

trigonometry and calculus, it can be shown that ei · ej = 0 if i ̸= j, and ei · ei = 1 for every i, i.e.
that this set is an orthonormal system.

Fourier series. This orthonormal system spans the subspace of V consisting of ‘well-behaved’ func-
tions, and such functions can be written in coordinate form as

f =

∞∑
i=1

(f · ei) ei (3)

or equivalently

f(τ) =
a0
2

+

∞∑
i=1

(
ai cos(iτ) + bi sin(iτ)

)
where

a0 =
1

π

∫ π

−π

f(τ) dτ,

ai =
1

π

∫ π

−π

f(τ) cos(iτ) dτ for i ≥ 1

bi =
1

π

∫ π

−π

f(τ) sin(iτ) dτ for i ≥ 1.

This is known as the Fourier series for f . There are however some technical caveats associated with
infinite series—Useful Property 16 only applies to finite bases, but equation (3) is an infinite series cor-
responding to an infinite orthornormal system, and this is why we need the restriction ‘well-behaved
functions’. In Part II Computer Vision and Digital Signal Processing you will learn more about Fourier
analysis and other related ways to decompose functions.

	I Learning with probability models
	Specifying and fitting models
	Maximum likelihood estimation
	Numerical optimization
	Random variables in code
	Random variables in maths
	Standard random variables
	Specifying numerical random variables
	Independence

	Learning generative models
	Supervised learning
	Supervised learning and prediction loss *

	Feature spaces / linear regression
	Fitting a linear model
	Features
	One-hot coding
	Non-linear response
	Periodic patterns
	Discovering features

	Linear mathematics
	Linear regression and least squares
	Confounded features
	Gauss's invention of least squares *

	II Handling probability models
	Simulations and calculations
	Monte Carlo integration
	Probability densities sum to one
	Handling numerical random variables *
	Random tuples
	Conditional random variables
	Bayes's rule for random variables
	applied using mathematics
	applied using weighted Monte Carlo

	Empirical methods
	The empirical cumulative distribution function
	The empirical distribution
	Goodness of fit and KL divergence *

	Appendix
	Standard random variables
	Python library commands
	List of common random variables

	Abstract linear mathematics
	Definitions and useful properties
	Orthogonal projection and least squares
	Advanced application: Fourier analysis *

