— Solution notes —

COMPUTER SCIENCE TRIPOS Part IB — mock — Paper 6

3 Foundations of Data Science (DJW)

I wish to compare two systems, A and B, along several dimensions of comparison.
For each system i € {A, B}, and for each dimension j € {1,2,3}, I have collected
five outcome measurements z;;;, k € {1,...,5}. I want to know if system B has
systematically larger measurements than A, across all dimensions.

(a) Consider the model

Xijr = aj + d1;—p + Normal(0, 02).

(7) Write this as a linear model. Write out the predicted outcomes for each of

the six categories of (7, j), and give an interpretation of the § term.
[4 marks]

(i) Give pseudocode to fit this model. Your code should estimate all the
unknown parameters, including o. [3 marks]

(7i7) Give pseudocode to find a 95% confidence interval for your estimated 0,
using resampling. [4 marks]

The model from part (a) assumes that the difference between the two systems is
common across all dimensions of comparison. I now wish to test this hypothesis.
Consider the general model

Xijk = q; + 5]'11':3 + NOI‘H’I&I(O, 0'2)

and let the null hypothesis Hy be that d; = d; = d3. Consider the test statistic

t= Z[:L'Uk — (& + 53‘11‘:3)}2

1,5,k

where hats denote parameters fitted under Hy. We’d expect this to be larger if
H, were not true.

(7) Explain how to find the distribution we’d expect to see for ¢, under Hy.
Give pseudocode. [4 marks]

(7) Explain what is meant by a one-sided test versus a two-sided test. Which
should we use in this case? [3 marks|

(#37) Give pseudocode to compute the p-value of this test. [2 marks]

— Solution notes —

Answer: Part (a). For linear modelling, we're dealing with feacture vectors and response vectors,
and it’s tremendously useful to explicitly put the data into spreadsheet-style format so that it’s
clear what those vectors are. The question describes data from two systems, three dimensions, and
five repeats; in a spreadsheet we’d store it like this:

sys dim rep X
A 1 1 T A1l
A 1 2 T A12

mydata = a4 1 5 Cais
A

2 1 T A21

B 3 5 B35

There are 2 x3x 5 = 30 rows in total, and it doesn’t matter what order the rows go in. In the answer
below, when we refer to feature vectors, we're referring to length-30 vectors from this spreadsheet.

Part (a)(7). The model can be written as
X = 01 ldim=1 + @2 ldim=2 + 3ldim=3 + 0lsys—B.

The predicted outcomes are as follows. They don’t depend on the repeat number k, so I'm writing
rep = * to indicate “repeat this row 5 times, one for each k”.

1]

im rep pred.

SvRIve R evRe S S
W R W o

* % ¥ ¥ ¥ 0¥
Q
@

Or we could write out the same table differently:

dim=1 dim=2 dim=3
sys=A o a2 a3
sys=B a;+90 as+ 6 as+ 46

The parameter ¢ is the increase in outcome for B compared to A, assumed to be common across all
dimensions of comparison.

Part (a)(#). This is a straightforward linear model, so we can fit it with least squares estimation.(To
be precise, this is a probability model with Gaussian noise, therefore the maximum likelihood
estimators for feature coefficients can be found using least squares estimation. See section 2.4 of
lecture notes.)

model = sklearn.linear_model.LinearRegression(fit_intercept=False)

F = numpy.column_stack([indicator(mydata.dim==j) for j in [1,2,3]] \
+ [indicator(mydata.sys=='B')])

model.fit(F, mydata.x)

— Solution notes —

Coding niceties: (1) our linear model equation doesn’t include a constant “1” feature, so we have to
set fit_intercept=False; (2) in creating the matrix F we have to concatenate the « features with the §
feature, and you can concatenate Python lists with +, which is not to be confused with element-wise
addition of numpy vectors also using +. In an exam, all that’s needed is pseudocode, not proper
Python. Your answer should refer to the fact that there’s no constant feature, but you don’t have to
give precise code to assemble all the feature vectors—you could sketch out a diagram, for example.

The question reminds us that we also need the maximum likelihood estimator for o. As we’ve seen
several times in lectures (section 2.4 of lecture notes; example sheet 1 question 6; example 7.5) the
maximum likelihood estimator for o is

. 1 A R
= 30 Z%(iﬂijk — predijk)2 where predijk = Qgim + Osys—B-
7,

Fitted parameters
al_hat,a2_hat,a3_hat,56_hat = model.coef_

Get the predicted values for each row of mydata
pred = al_hat*F[:,0] + a2_hat*F[:,1] + a3_hat*F[:,2] + & _hat*F[:,3]

MLE for o
o_hat = numpy.sqrt(numpy.sum((mydata.x - pred)**2) / len(mydata))

Or you may remember that sklearn has convenient syntax for making predictions:

pred = model.predict(F)

Part (a)(7i¢). As usual, we generate many synthetic datasets, and compute the quantity of interest
(3) on each of them. The code below uses parametric resampling to generate synthetic datasets;
we could have also used non-parametric. Remember that parametric resampling means “generate
new data, but use maximum likelihood estimators for each of the unknown parameters.” Here, pred
already includes the maximum likelihood estimators for &1, &9, &3, and 5.

def rx_star(): return numpy.random.normal(loc=pred, scale=c_hat)

def 6 _mle(x):
model = sklearn.linear_model.LinearRegression(fit_intercept=False)
model.fit(F, x)
return model.coef [-1]

6_hat_samples = numpy.array([6_mle(rx_star()) for _ in range(5000)])

lo,hi = numpy.quantile(&_hat_samples, [.025, .975])

e This code reuses the matrix F from before—we’re just synthesizing a new x column, leaving
the feature columns unchanged, so we don’t need to recreate F here.

e This code produces a two-sided 95% confidence interval, but given that the question says “I
want to know if B has larger measurements than A” it would arguably be more useful to give
a one-sided confidence interval with hi = co.

Part (b). In lectures, we saw a general strategy for devising hypothesis tests: (1) write out a general
model, (2) express your null hypothesis as a restriction on the parameters. That’s exactly how this

3

— Solution notes —

question has specified Hy. It’s usually useful to write out Hy in terms of the parameters that it
actually has: it says
Xijk = Oéj + 511‘:3 + Norma1(07o2).

In other words, Hy denotes exactly the same model that we looked at in part (a). The test statistic

is
. 2
t= Z [luk - (CAYJ + 51i:B):| .
i,k
It’s easier to refer to this equation, than to refer to the equation given in the question and mentally
add “where all the d; are equal”.

Part (b)(7). Under Hy, the model we're considering is exactly the model from part (a), so the
resampler from part (a)(#i7) works perfectly well here.

The procedure: create many resampled datasets using rx_star(), evaluate the test statistic t on each
of them, then plot a histogram of the result.

def t(x):
model = sklearn.linear_model.LinearRegression(fit_intercept=False)
model.fit(F, x)
pred = model.predict(F)
return numpy.sum((x-pred)**2)

t_samples = numpy.array([t(rx_star()) for _ in range(5000)])

plt.hist(t_samples)

One point to emphasize: the test statistic has to be a statistic, i.e. a function purely of the data. It
shouldn’t include unknown parameters, and it shouldn’t include parameters fitted from a different
dataset. Think of parallel universes..we want to know what a parallel-universe data scientist would
conclude from seeing their dataset, and they can’t see our dataset. Therefore, when we compute ¢
on a resampled dataset, we also have to compute the model predictions for that fitted dataset, not
re-use the fitted parameters for the dataset we actually saw.

Part (b)(id).

o If we expect t to be large if Hy were false, then we’d consider large positive values of ¢ to be
evidence against Hy. This is called a one-sided test.

o If we expect t to be small (or large negative) if H,y were false, then we’d consider small (or
large negative) values of ¢ to be evidence against Hy. This is also called a one-sided test.

o If we expect t to be either large or small if Hy were false, and either is possible, then we’d
consider extreme values of ¢t on both sides to be evidence against Hy. This is called a two-sided
test.

In this case, the question says “If Hy is false, we’d expect [t] to be larger”, therefore we should use
a one-sided test of the first sort.

Part (b)(4i¢). The p-value is the probability of seeing a value as extreme or more extreme than what
we actually saw.

p = numpy.mean(t_samples >= t(mydata.x))

