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COMPUTER SCIENCE TRIPOS Part IB – mock – Paper 6

Foundations of Data Science (DJW)

Let x1, . . . , xn be observed values, which we believe are sampled independently from
the distribution Uniform[µ− θ, µ+ θ], for some parameters µ ∈ R and θ > 0.

(a) Suppose µ is known and θ is unknown. Use Θ ∼ Pareto(b0, α0) as the prior
for θ, where b0 and α0 are constants. (The Pareto distribution is described
below.)

(i) What is the prior density of Θ? [1 mark]

(ii) Show that the posterior distribution of Θ is Pareto, and give its parameters.
[5 marks]

(iii) Calculate a 95% posterior confidence interval for Θ. [4 marks]

(b) Suppose µ and θ are both unknown. Use Normal(c0, σ
2
0) as the prior for µ, and

Pareto(b0, α0) as the prior for θ. Here c0, σ0, b0, and α0 are all constants.

(i) Find the joint posterior density of the two parameters. [Note: Leave your
answer as an unnormalized density function.] [3 marks]

(ii) Give pseudocode to generate a weighted sample from this density. Your
code should produce a list of m sampled pairs

[
(µ1, θ1), . . . , (µm, θm)

]
together with weights [w1, . . . , wm]. [3 marks]

(iii) Give pseudocode to find a 95% posterior confidence interval for Θ.
[4 marks]

Note: If X ∼ Pareto(b, α) then it has cumulative distribution function

P(X ≤ x) =

{
1−

(
b

x

)α}
1x≥b

and it may be sampled using

b * (1 + numpy.random.pareto(a=α))
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Answer: Part (a)(i). Simply differentiate the cdf to get

PrΘ(θ) = α0

(
bα0
0

θα0+1

)
1θ≥b0 .

Or, if the indicator function seems a bit mysterious, write out the cases separately:

P(Θ ≤ θ) =

{
1− (b0/θ)

α0 if θ ≥ b0

0 if θ < b0

PrΘ(θ) =
d

dθ
P(Θ ≤ θ) =

{
α0b

α0
0 /θα0+1 if θ ≥ b0

0 if θ < b0.

I don’t want to see any x left in the answer! When you transpose equations from one setting to
another, make sure you transpose the symbols. Here we’re transposing from X to Θ, from x to θ,
from b to b0, from α to α0.

Part (a)(ii). The density for the entire dataset is

Pr
(
x1, . . . , xn | θ

)
=

n∏
i=1

PrX(xi | θ) where X ∼ Uniform[µ− θ, µ+ θ]

=

n∏
i=1

{
1

2θ
1xi∈[µ−θ,µ+θ]

}
=

1

(2θ)n
1all xi∈[µ−θ,µ+θ]

=
1

(2θ)n
1mini xi≥µ−θ1maxi xi≤µ+θ.

The density depends on µ too, of course, but because the question tells us that µ is known I’m not
bothering to write it out. See also example sheet 1 question 5 for practice at working with indicator
functions in this way. So the posterior density is

PrΘ(θ | x1, . . . , xn) = κPrΘ(θ) Pr(x1, . . . , xn | µ, θ)

= κα0b
α0
0

1

θα0+1

1

(2θ)n
1θ≥µ−mini xi

1θ≥maxi xi−µ

= κ′ 1

θα0+n+1
1θ≥max{b0,µ−mini xi,maxi xi−µ}.

We only care about how this depends on θ, not about the constants, so we can amalgamate all
non-θ terms into κ′. (To be precise, κ′ = κα0b

α0
0 /2n.) The constants κ and κ′ are whatever they

need to be in order for this posterior density to integrate to 1. In fact, we don’t need to even
work out κ′—we see that the θ terms are exactly that of a Pareto distribution with parameters
b = max{b0, µ − mini xi,maxi xi − µ} and α = α0 + n, and so κ′ must necessarily be precisely
the constant term at the front of the Pareto density. In conclusion, the posterior distribution is
(Θ | x1, . . . , xn) ∼ Pareto(b, α) where b and α are as stated.

Part (a)(iii). In many situations it’s reasonable to report a two-sided confidence interval, but in this
case, after sketching the posterior density, a one-sided confidence interval seems more appealling.
The posterior density looks like this:

b
θ

PrΘ(θ | data)
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So let’s report a one-sided confidence interval [b, hi]. We need to choose hi so that P(Θ > hi |data) =
0.05.

We know that (Θ|data) is Pareto(b, α) with parameters b and α as given in the answer to part (a)(ii).
Using the cdf as stated in the question,

P(Θ > hi | data) =
{
(b/hi)α if hi ≥ b

1 if hi < b

and so we pick hi to solve (b/hi)α = 0.05 hence hi = b(0.05)−1/α.

Part (b)(i). Bayes’s rule is always the same: posterior density = constant, times prior density, times
data density. When we apply Bayes’s rule we MUST include all unknown parameters in the prior
and posterior. In this case there are two unknowns, µ and θ, so we’ll write down a joint prior.

Assuming the prior parameters M and Θ are independent and noting that M is the upper case
version of µ!, the prior density is

Pr(M,Θ)(µ, θ) =
1√
2πσ2

0

e−(µ−c0)
2/2σ2

0

(
bα0
0

θα0+1

)
1θ≥b0 .

The data density was calculated in part (a)(ii): it is

Pr(x1, . . . , xn | θ, µ) = const × 1

θn
1mini xi≥µ−θ1maxi xi≤µ+θ.

Putting them together, the joint posterior density is

Pr(M,Θ)(µ, θ | x1, . . . , xn) = κe−(µ−c0)
2/2σ2

0
1θ≥b0

θα0+1

1

θn
1µ−θ≤m1M≤µ+θ.

Here I’ve gathered non-θ terms into the constant κ. The question doesn’t say “simplify your formula
as much as possible”, so I’ll leave it like this. If I thought I’d need to use this formula to answer a
later part of the question, I’d simplify it.

Part (b)(ii)

# Sample m pairs from the joint prior distribution
# For clarity, write random.pareto2(b,a) for b * (1+random.pareto(a))
prior_samp = [(random.normal(loc=c0, scale=sigma0, size=m), random.pareto2(b0,alpha0))

for _ in range(m)]

# Compute the data density, and normalize to get weights w
n,m,M = len(x), min(x), max(x)
prx = [1/(theta ** n) * indicator(mu-theta <= m and M <= mu+theta)

for (mu,theta) in prior_samp]
w = prx / sum(prx)

The question says “produce a list of sampled pairs”. It says this to emphasize that we’re sampling
from the joint distribution. The code above does this. But in practical numpy code, it’s not good
style to use pairs — we could if we wanted column-stack the theta and mu vectors, or we could just
leave them unstacked, i.e. just generate two separate vectors for theta and mu. That will still get
you the marks.

Part (b)(iii) We’re asked for a 95% posterior confidence interval for Θ. Our sample actually consists
of pairs (M,Θ), so we might start by just concentrating on the Θ samples:
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theta_samp = [theta for (mu,theta) in prior_samp]

Recall the weighted Monte Carlo approximation:

P(Θ ∈ A | data) ≈
∑

i:θi∈A

wi.

We want to pick an interval [lo, hi] that has probability 95%, i.e. so that the total weight of samples
inside this interval is 95%. We can choose whatever interval we like, as long as it has the correct
weight.

# Pick lo such that sum(w[theta<lo])=0.025
# and hi such that sum(w[theta>hi])=0.025:

(theta_samp, w) = theta_samp and w, but sorted in order of increasing theta
F = cumsum(w)
lo = the last theta for which F <= 0.025
hi = the last theta for which F <= 0.975

Don’t worry about rounding, and which exact side of the interval we should be on. The code in
lecture notes didn’t bother about it, so you don’t have to either. The prior distribution for θ is
continuous, and if the sample is large enough, there should be no problem. It’s a bit more of a
nuisance to deal with discrete distributions—but again, this isn’t something worth dealing with in
the exam.
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