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For the questions that ask “find …’, you may give either a formula, or pseudocode. Or, if the question gives you
numerical data, you are encouraged to give actual code and a numerical answer.

Question 1. We are given a dataset x1, . . . , xn which we believe is drawn from Normal(µ, σ2) where µ and σ are
unknown.
(a) Find the maximum likeihood estimators µ̂ and σ̂.
(b) Find a 95% confidence interval for σ̂, using parametric resampling.
(c) Repeat, but using non-parametric resampling.
Question 2. We are given a dataset x1, . . . , xn which we believe is drawn from Uniform[0, θ] where θ is unknown.
Recall from example sheet 1 that the maximum likelihood estimator is θ̂ = maxi xi. Find a 95% confidence interval
for θ̂, both using parametric resampling and using non-parametric resampling.
Question 3. The linear model for temperature increase from lecture notes section 2.2.5 invites the probability model

tempi = α+ β1 sin(2πti) + β2 cos(2πti) + γ(ti − 2000) + Normal(0, σ2).

Find a 95% confidence interval for γ̂, the maximum likelihood estimator for the rate of temperature increase.
Question 4. The number of unsolved murders in Kembleford over three successive years was 3, 1, 5. The police chief
was then replaced, and the numbers over the following two years were 2, 3. We know from general policing knowledge
that the number of unsolved murders in a given year follows the Poisson distribution. Assuming that the numbers
come from Poisson(λ) under the old chief and from Poisson(µ) under the new chief, estimate the mean change µ− λ
and report a 95% confidence interval.

Note. The Poisson(λ) distribution takes values in {0, 1, . . . } and has probability mass function Pr(x) = λxe−λ/x!.
Its cdf can be found using scipy.stats.poisson.cdf(x, mu=λ).
Question 5. I tossed a coin n = 100 times and got x = 65 heads. My null hypothesis is that the coin is unbiased,
and my alternative hypothesis is that the probability of heads is some arbitrary value p ∈ [0, 1]. Consider testing H0

using the test statistic t = x itself.
(a) If H0 is true, what is the distribution of the test statistic?
(b) Should I use a one-sided or a two-sided test?
(c) Find the p-value.
[Hint. scipy.stats.binom.cdf(x, n, p) gives P(Binom(n, p) ≤ x).]

Hints and comments
Question 1. For part (a) you should learn these formulae by heart, and be able to derive them without thinking: µ̂
is the sample mean x̄, and σ̂ is

√
n−1

∑
i(xi − x̄)2. For part (b), see example 7.1 from lecture notes. For part (c), see

example 7.2 from lecture notes for the resampling method; the statistic we’re interested in is the same as in part (b),
namely σ̂.
Question 2. The maths is very similar to question 1. However, the result is unhelpful—see the supplementary
question sheet.
Question 3. Use parametric resampling. You have to find maximum likelihood estimators for all the parameters,
including σ.
Question 4. See example 7.6 from lecture notes.
Question 5. See section 7.3 of lecture notes. Part (a) is just the same as every single illustration in that section,
except it’s simpler because there are no parameters to estimate, and we know the distribution precisely. It’s just a
fancy way of asking “What is the distribution of the number of heads, when I toss a fair coin?”, and the answer is
of course Binom(100, 1/2). For parts (b) and (c), read the notes about the Neyman–Pearson approach, and follow
example 7.13.



Supplementary questions
These questions are not intended for supervision (unless your supervisor directs you otherwise). Some require careful
maths, some are best answered with coding, some are philosophical.

Question 6. Given a dataset x1, . . . , xn, let X∗ be the random variable produced by selecting one of the datapoints
at random. This has distribution

PrX∗(x) =
1

n

(
num. datapoints
that are equal to x

)
.

Show that EX∗ = x̄ and VarX∗ = n−1
∑

i(xi − x̄)2, where x̄ = n−1
∑

i xi.

Don’t be put off by the fancy setting. This is just a question asking you for the mean and variance of a random variable,
the sort of question you answered in IA Maths.

Try to write out your answer formally, using the Law of Total Expectation, which is a fancy form of the Law of Total
Probability on example sheet 0. It says that for any pair of random variables Y and Z,

EY =
∑
z

E(Y | Z = z)P(Z = z).

You could let Z be the index of the selected datapoint, an integer in {1, . . . , n}. Or you could let Z be the value of the
selected datapoint.

Question 7. I implement the two resamplers from question 2. To test them, I generate 1000 values from Uniform[0, a]
with a = 2, and find a 95% confidence interval for â. I repeat this 20 times. Not once does my confidence interval
include the true value, a = 2, for either resampler. Explain.

Resampling is an heuristic, not a perfect procedure. It works well for ‘central’ statistics like averages or sums. It doesn’t
work well for certain types of extreme statistics (like the maximum of a dataset) nor for certain types of distribution (like
the uniform). Section 8 of the extended lecture notes, on overfitting, frames the discussion; that section is not examinable
material.

Question 8. In the setting of question 3, I have defined a function for computing the fitted temperature at an
arbitrary future timepoint,

def temp(t ) : return α̂ + β̂1 sin (2πt ) + β̂2 cos(2πt ) + γ̂(t−2000)
(a) Modify the code to also return a 95% confidence interval.
(b) This code returns the fitted temperature at t. Modify it to return a 95% confidence interval for the actual

temperature, which is fitted temperature plus noise.

For part (a), you should organize your code so that it accepts a vector of t values, and it doesn’t resample for every value
in the vector. This is how we typically want to use it, to plot nice smooth confidence ribbons.

For part (b), here’s one way to think about it. From part (a), you can generate a resampled set of values for
X∗ = temp(t), and this is what you used to generate a confidence interval. For part (b), we want to report the distribution
of Y = X∗ +Normal(0, σ2). (Let’s pretend that σ̂ is known, for now.) We know the joint distribution of X∗ and the noise
term, so we can find the distribution of Y using marginalization. See section 3.4 of lecture notes, or the slides for lecture 8
(slides are on Moodle). Next: how should you deal with the fact that σ̂ is estimated?

Question 9. We are given a dataset x1, . . . , xn. Our null hypothesis is that these values are drawn from Normal(0, σ2),
where σ is an unknown parameter. Alternatively, we suspect that values might come from distributions with unequal
variances. Consider the test statistic

t =

n∑
i=1

(xi

σ̂

)2

.

This would tend to be bigger under the alternative hypothesis than under the null hypothesis.
(a) Find the distribution of t that we’d expect to see, if the null hypothesis holds.
(b) Find the p-value.


