
Example sheet 1
Learning with probability models

Foundations of Data Science—DJW—2019/2020

Question 1. Sketch the cumulative distribution function, and calculate the density function, for
this continuous random variable:
def rx () :

u = random.random()
return u ∗ (1−u)

[Hint. See Exercise 3.3, from lecture 2. Sketch a graph of u(1 − u) as a function of u. For what
ranges of u is u(1 − u) ≤ y? What is the probability that the random variable U ∼ U [0, 1] lies in
these ranges? ]

Question 2. We wish to implement a random variable whose cumulative distribution function
F (x) = P(X ≤ x) is given by the function below. Here, a and b are parameters in the range [0, 1].
Sketch F (x), and give code to generate such a random variable.

F (x) =


0 if x < 0

bx/a if 0 ≤ x ≤ a

b+ (1− b)(x− a)/(1− a) if a < x ≤ 1

1 if x > 1.

[Hint. See slide 10 from lecture 2. Also see the solution to mock exam question 1(b), in a video
posted on Moodle, which suggests inventing a “mixture of uniforms”. Try answering the question
first for parameters a = 1/2, b = 1/4, and after that go on to the general case.]

Question 3. Given a dataset (x1, . . . , xn), we wish to fit a Poisson distribution. This is a discrete
random variable with a single parameter λ > 0, called the rate, and

Pr(x | λ) = λxe−λ

x!
for x ∈ {0, 1, 2, . . . }.

Show that the maximum likelihood estimator for λ is λ̂ = n−1
∑n

i=1 xi. [Hint. This is a question
about learning generative models. See section 1.5 exercise 1.7.]

Question 4. Given a dataset [3,2,8,1,5,0,8], we wish to fit a Poisson distribution. Give code to
achieve this fit, using scipy.optimize.fmin. [Hint. See section 1.2 exercise 1.4. Also, if you use
numpy, watch out for which variables in your code are vectors and which are scalars.]

Question 5. Given a dataset (x1, . . . , xn), we wish to fit the Uniform[0, θ] distribution, where θ
is unknown. By writing the density with explicit boundaries,

Pr(x | θ) = 1

θ
1x≥01x≤θ for x ∈ R,

show that the maximum likelihood estimator is θ̂ = maxi xi.
[Hint. In any question where the range of the random variable depends on unknown parameters,

it’s a good idea to include the boundaries explicitly in your density function, using an indicator
function. See lecture 2 slides 10–11. A neat thing about indicator functions is that

1ξ≥a × 1ξ≥b = 1ξ≥a and ξ≥b = 1ξ≥max(a,b).

Use indicator functions, including this equation, in your answer. It will help make sure you’re not
missing any corner cases.]
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Question 6 (A/B testing). Your company has two systems which it wishes to compare, A and
B. It has asked you to compare the two, on the basis of performance measurements (x1, . . . , xm)
from system A and (y1, . . . , yn) from system B. Any fool using Excel can just compare the averages,
x̄ = m−1

∑m
i=1 xi and ȳ = n−1

∑n
i=1 yi, but you are cleverer than that and you will harness the

power of Machine Learning.
Suppose the xi are drawn from X ∼ Normal(µ, σ2), and the yi are drawn from Y ∼ Normal(µ+

δ, σ2), and all the samples are independent, and µ, δ, and σ are unknown. Find maximum likelihood
estimators for the three unknown parameters. [Hint. See exercise 1.8. When you do maximum
likelihood estimation, you are optimizing log lik(params|data), and the data should include absolutely
all data that can shed light on the params. Don’t estimate σ from the xi alone—you should find a
way to estimate it from both the xi and the yi, since both of them are informative about it. ]

Question 7. Let xi be the population of city i, and let yi be the number of crimes reported.
Consider the model Yi ∼ Poisson(λxi), where λ > 0 is an unknown parameter. Find the maximum
likelihood estimator λ̂. [Hint. This is a question about supervised learning. See section 1.6
exercise 1.11.]

Question 8. We wish to fit a piecewise linear line to a dataset, as shown below. The inflection
point is given, and we wish to estimate the slopes and intercepts. Explain how to achieve this
using a linear modelling approach.
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Hint. See sections 2.2.1 and 2.2.2. Your model should represent a continuous line with an inflection
point, not two separate lines. As a sanity check, you could implement your model equation and
plot it. The code below illustrates a model that fails the sanity check:
def pred(x , m1,c1 ,m2,c2 , inflection_x=3):

e = numpy.where(x <= inflection_x , 1 , 0)
return e∗(m1∗x + c1) + (1−e)∗(m2∗x+c2)

x = numpy. linspace (0,5,1000)
plt . plot (x , pred(x , m1=0.5,c1=0,m2=1,c2=2))

Question 9. For the climate data from section 2.2.5 of lecture notes, we proposed the model

temp ≈ α+ β1 sin(2πt) + β2 cos(2πt) + γt

in which the +γt term asserts that temperatures are increasing at a constant rate. We might
suspect though that temperatures are increasing non-linearly. To test this, we can create a non-
numerical feature out of t by

u = ’decade_’ + str(math.floor(t/10)) + ’0s’

(which gives us values like ’decade_1980s’, ’decade_1990s’, etc.) and fit the model

temp ≈ α+ β1 sin(2πt) + β2 cos(2πt) + γu.

Write this as a linear model, and give code to fit it. [See section 2.2.2. You should explain what
the feature vectors are, then give a one-line command to estimate the parameters.]

Question 10. I have two feature vectors

gender = [f, f, f, f,m,m,m], eth = [a, a, b, w, a, b, b]
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and I one-hot encode them as

g1 = [1, 1, 1, 1, 0, 0, 0] e1 = [1, 1, 0, 0, 1, 0, 0]

g2 = [0, 0, 0, 0, 1, 1, 1] e2 = [0, 0, 1, 0, 0, 1, 1]

e3 = [0, 0, 0, 1, 0, 0, 0]

Are these five vectors {g1, g2, e1, e2, e3} linearly independent? If not, find a linearly independent
set of vectors that spans the same feature space. [Hint. See section 2.5 exercise 2.3.]

Question 11. For the police stop-and-search dataset in section 2.5 example 2.4, we wish to
investigate intersectionality in police bias. We propose the linear model

1[outcome=find] ≈ αgender + βeth.

Write this as a linear model using one-hot coding. Are the parameters identifiable? If not, rewrite
the model so they are, and interpret the parameters of your model. [Hint. Section 2.5 example 2.4.]
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Supplementary question sheet 1
Learning with probability models

Foundations of Data Science—DJW—2019/2020

These questions are not intended for supervision (unless your supervisor directs you otherwise).
Some of them are longer form exam-style questions, which you can use for revision. Others,
labelled ∗, ask you to think outside the box.

Question 12 (Cardinality estimation).
(a) Let T be the maximum of m independent Uniform[0, 1] random variables. Show that P(T ≤

t) = tm. Find the density function PrT (t). Hint. For two independent random variables U
and V ,

P
(
max(U, V ) ≤ x

)
= P(U ≤ x and V ≤ x) = P(U ≤ x)P(V ≤ x).

(b) A common task in data processing is counting the number of unique items in a collection.
When the collection is too large to hold in memory, we may wish to use fast approximation
methods, such as the following: Given a collection of items a1, a2, . . . , compute the hash of
each item x1 = h(a1), x2 = h(a2), . . . , then compute t = maxi xi.
If the hash function is well designed, then each xi can be treated as if it were sampled from
Uniform[0, 1], and unequal items will yield independent samples..
The more unique items there are, the larger we expect t to be. Given an observed value t,
find the maximum likelihood estimator for the number of unique items. [Hint. This is about
finding the mle from a single observation, as in exercise 1.1.]

http://blog.notdot.net/2012/09/Dam-Cool-Algorithms-Cardinality-Estimation

Question 13*. Sketch the cumulative distribution functions for these two random variables. Are
they discrete or continuous?
def rx () :

u = random.random()
return 1/u

def ry () :
u2 = random.random()
return rx () + math. f loor (u2)

[Hint. For intuition, use simulation. Generate say 10,000 samples, and plot a histogram, then a
plot of “how many are ≤ x” as a function of x.]

Question 14. A point lightsource at coordinates (0, 1) sends out a ray of light at an angle Θ
chosen uniformly in [−π/2, π/2]. Let X be the point where the ray intersects the horizontal line
through the origin. What is the density of X? [Hint. See exercise 3.3, from lecture 2.]

Note: This random variable is known as the Cauchy distribution. It is unusual in that it has
no mean.

X
Θ

Question 15. As an alternative to the model from question 9, we might suspect that tempera-
tures are increasing linearly up to 1980, and that they are increasing linearly at a different rate
from 1980 onwards. Devise a linear model to express this, using your answer to question 8, and fit
it. Plot your fit. [Hint. Sample code for plotting a fit is shown in section 2.2.4.]

Question 16 (A/B testing). The dataset for question 6 has been presented to you as a spread-
sheet with m+n rows and two columns, one column measurement containing (x1, . . . , xm, y1, . . . , yn),
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and another column system whose entries are either A or B indicating which system the measure-
ment came from.

Write the probabilistic model from question 6 as a linear model, with coefficients µ and δ.
Explain what your feature vectors are. [Hint. Use the approach of section 2.4.]

Question 17. Here are two different models for the climate data:

temp ≈ α+ β1 sin(2πt) + β2 cos(2πt) + γt

and
temp ≈ α+ β1 sin(2πt) + β2 cos(2πt) + γ(t − 2000).

The first model produces a fitted value α = −63.9℃ and the second model produces a fitted value
α = 10.5℃. Why the difference? Which is correct? [The answer is in section 2.2.5. But try to
answer yourself, before looking it up.]

Question 18 (Heteroscedasticity). We are given a dataset1 with predictor x and label y and
we fit the linear model

yi ≈ α+ βxi + γx2
i .

After fitting the model using the least squares estimation, we plot the residuals εi = yi − (α̂ +

β̂xi + γ̂x2
i ).
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residual = observed - predicted

(a) Describe what you would expect to see in the residual plot, if the assumptions behind linear
regression are correct.

(b) This residual plot suggests that perhaps εi ∼ Normal
(
0, (σxi)

2
)

where σ is an unknown
parameter. Assuming this is the case, give pseudocode to find the maximum likelihood
estimators for α, β, and γ.

[Hint. This question is asking you to reason about a custom probability model, in the style of
section 2.4. A model with unequal variances is called ‘heteroscedastic’. ]

Question 19. Let (F1, F2, F3, . . . ) = (1, 1, 2, 3, . . . ) be the Fibonacci numbers, Fn = Fn−1+Fn−2.
Define the vectors f , f1, f2, and f3 by

f = [F4, F5, F6, . . . , Fm+3]

f1 = [F3, F4, F5, . . . , Fm+2]

f2 = [F2, F3, F4, . . . , Fm+1]

f3 = [F1, F2, F3, . . . , Fm]

for some large value of m. If you were to fit the linear model

f ≈ α+ β1f1 + β2f2

what parameters would you expect? What about the linear model

f ≈ α+ β1f1 + β2f2 + β3f3?

[Hint. Are the feature vectors linearly independent?]

1https://teachingfiles.blob.core.windows.net/datasets/heteroscedasticity.csv
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