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Foundations of Data Science—DJW—2019/2020

Question 1. A card is drawn at random from a pack. Event A is ‘the card is an ace’, event B is ‘the card is a spade’,
event C is ‘the card is either an ace, or a king, or a queen, or a jack, or a 10’. Compute the probability that the card
has (i) one of these properties, (ii) all of these properties.

Copied from Maths for NST A page 185. Writing

H ≡ hearts, D ≡ Diamonds, C ≡ Clubs, S ≡ Spaces,
a ≡ ace, k ≡ king, q ≡ queen, j ≡ jack, 10 ≡ 10, . . .

we can write the events as

A = {Ha, Da, Ca, Sa} P(A) =
4

52
=

1

13

B = {Sa, Sk, Sq, Sj , S10, . . . , S2} P(B) =
13

52
=

1

4

C = {Ha, Hk, Hq, Hj , H10, Da, Dk, . . . } P(C) =
4× 5

52
=

5

13
.

(i). At least one of these properties?

P(A ∪B ∪ C) = 1− P(A ∪B ∪ C)

= 1− P
{
H2, . . . , H9, D2, . . . , D9, C2, . . . , C9}

)
= 1− 3× 8

52
=

7

13
.

(ii). All of these properties?
P(A ∩B ∩ C) = P(Sa) =

1

52
.

Question 2. A biased die has probabilities p, 2p, 3p, 4p, 5p, 6p of throwing 1, 2, 3, 4, 5, 6 respectively. Find p.
What is the probability of throwing an even number?

Copied from Maths for NST A page 187. Write Ω for the entire sample space, Ω = {1, 2, 3, 4, 5, 6}. It’s always the case that
P(Ω) = 1, i.e. it’s certain that the outcome will be something from the sample space. So

1 = P(Ω) = P(1) + P(2) + P(3) + P(4) + P(5) + P(6)
= p+ 2p+ 3p+ 4p+ 5p+ 6p

= 21p

hence p = 1/21. Also,
P(even) = P

(
{2, 4, 6}

)
= 2p+ 4p+ 6p =

12

21
=

4

7
.

Question 3. Consider drawing 2 balls out of a bag of 5 balls: 1 red, 2 green, 2 blue. What is the probability of the
second ball drawn from the bag being blue given that the first ball was blue if (i) the first ball is replaced, (ii) the first
ball is not replaced?
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Adapted from Maths for NST A page 188.

In scenario (i), after the first ball has been replaced then the bag still has 1 red, 2 green, 2 blue, so the probability that the
second ball is blue is 2/5.

In scenario (ii), after the first ball has been removed, then the bag now has 1 red, 2 green, 1 blue, so the probability that the
second ball is blue is 1/4.

We could answer the question more formally, by setting up a sample space containing all possible outcomes for the pair
(1st draw, 2nd draw),

Ω =
{
(r, r), (r, g), (r, b), (g, r), (g, g), (g, b), (b, r), (b, g), (b, b)

}
,

then figuring out the probability of each of these outcomes, then using conditional probability to find P(B2 |B1) where

B1 = {blue on 1st draw} = {(b, r), (b, g), (b, b)}
B2 = {blue on 2nd draw} = {(r, b), (g, b), (b, b)}.

Alternatively we could imagine that the balls have identities as well as colours, for example g1 ≡ green ball 1, g2 ≡ green ball 2,
and consider the sample space

Ω′ =
{
(r, r), (r, g1), (r, g2), . . .

}
.

This second sample space makes it easier to reason about the probability of each outcome.

In the language of conditional probability and independence, it turns out the events B1 and B2 are independent in scenario (i),
but they are not independent in scenario (ii).

Question 4. Two cards are drawn from a deck of cards. What is the probability of drawing two queens, given that
the first card is not replaced?

Adapted from IA Maths for NST, page 189.

Let’s answer this question formally, by setting up a full sample space of all possible outcomes, i.e. let Ω consist of all pairs
(1st card, 2nd card). Every outcome is equally likely, except for outcome where the 1st and 2nd cards are identical; these have
probability 0, since the first card is not replaced. Then

{draw two queens} =
{
(Hq, Dq), (Hq, Sq), (Dq, Hq), ...

}
so

P(draw two queens) = num. possible outcomes with two queens
num. possible outcomes =

4× 3

52× 52− 52
=

1

221
.

Question 5. A screening test is 99% effective in detecting a certain disease when a person has the disease. The test
yields a ‘false positive’ for 0.5% of healthy persons tested. Suppose 0.2% of the population has the disease. (i) What is
the probability that a person whose test is positive has the disease? (ii) What is the probability that a person whose
test is negative actually has the disease after all?

Taken from IA Maths page 192. Define the events
A = {person has disease}, B = {test came back positive}.

The question tells us several conditional probabilities:

P(B |A) = 0.99, P(B | ¬A) = 0.005,

P(¬B |A) = 0.01, P(¬B | ¬A) = 0.995.

It also tells us about the probability of A absent any diagnostic information:

P(A) = 0.002,

P(¬A) = 0.998.

For (i), Applying Bayes’s rule,

P(A |B) =
P(A) P(B|A)

P(B)
=

P(A) P(B|A)

P(A)P(B|A) + P(¬A)P(B|¬A)

=
0.002× 0.99

0.002× 0.99 + 0.998× 0.005

≈ 0.284.
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For (ii), applying Bayes’s rule again,

P(A | ¬B) =
P(A)P(¬B |A)

P(¬B)
=

P(A)P(¬B |A)

P(A)P(¬B |A) + P(¬A)P(¬B | ¬A)

=
0.002× 0.01

0.002× 0.01 + 0.998× 0.995

≈ 2.01× 10−5.

Question 6. What is the probability that in a room of r people at least two have the same birthday?

Taken from IA Maths page 194.

Assume 365 days in a year. Let the event A be “two or more people have birthdays on the same day”, so ¬A is “all people
have different birthdays”. The number of arrangements of birthdays in which all birthdays are distinct is

N¬A = 365× 364× · · · × (365− r + 1) =
365!

(365− r)!
.

The total number of arrangements allowing repeats is

N = 365× 365× · · · × 365 = 365r.

So

P(¬A) =
N¬A

N
=

365!

(365− r)!365r
,

and

P(A) = 1− P(¬A) = 1− 365!

(365− r)!365r
.

Question 7. Out of 10 physics professors and 12 chemistry professors, a committee of 5 people must be chosen in
which each subject has at least 2 representatives. In how many ways can this be done?

There are 10 physics professors (P) and 12 chemistry professors (C), and the committee needs 5 people, so it can be either
2P + 3C or 3P + 2C. Writing N2P for the number of ways to pick 2 physics professors, etc.,

N2P =

(
10

2

)
= 45, N3C =

(
12

3

)
= 220, N2P+3C = N2PN3C = 45× 220 = 9900

and

N3P =

(
10

3

)
= 120, N2C =

(
12

2

)
= 66, N3P+2C = N3PN2C = 120× 66 = 7920.

The total number of possible committees is

N2p+3C +N3P+2C = 9900 + 7920 = 17820.

Question 8. What is the probability of throwing exactly 3 heads out of 6 tosses of a fair coin? How about at least
one head?

Taken from IA Maths page 200. Let p be the probability of heads, 1 − p the probability of tails. The coin is fair so p = 1/2.
The question asks for

P(3 heads out of 6 tosses) =
(
6

3

)
p3(1− p)3 =

6!

3!3!
(1/2)3(1/2)3 =

20

64
=

5

16
.
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It also asks for

P(at least one head) = 1− P(zero heads) = 1−

(
6

0

)
p0(1− p)6 = 1− 1

64
=

63

64
.

Question 9. A bag contains 6 blue balls and 4 red balls. Three balls are drawn from the bag without replacement.
Let X be the number of these three balls that are red. Find the density function f(x) = P(X = x).

Taken from IA Maths page 204. This question uses the term “density function”, when “probability mass function” is technically
better. But given that so many machine learning formulae apply equually to probability mass functions (in the discrete case)
and density functions (in the continuous case), it’s nice to have a single common wording for both cases.

P(X = 0) = P(bbb) = 6

10
× 5

9
× 4

8
=

120

720
=

1

6
.

P(X = 1) = P(rbb) + P(brb) + P(bbr)

=
4

10
× 6

9
× 5

8
+

6

10
× 4

9
× 5

8
+

6

10
× 5

9
× 4

8
=

120 + 120 + 120

720
=

1

2
.

P(X = 2) = P(rrb) + P(rbr) + P(bbr)

=
4

10
× 3

9
× 6

8
+

4

10
× 6

9
× 3

8
+

6

10
× 4

9
× 3

8
=

72 + 72 + 72

720
=

3

10

P(X = 3) = P(rrr) = 4

10
× 3

9
× 3

8
=

24

720
=

1

30
.

As a sanity check, let’s verify that probabilities sum to one:

P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) =
120

720
+

360

720
+

216

720
+

24

720
= 1.

Question 10. Let X be a random variable. Show that VarX = EX2 − (EX)2.
Note: by convention, E is taken to have lower precedence than multiplication and power, and higher precedence

than addition and subtraction. So the expression of interest is (E(X2))− (E(X))2.

The variance is defined to be
VarX = E

[
(X − µ)2

]
where µ = EX.

Expanding the square,

VarX = E
[
(X2 − 2Xµ+ µ2)

]
= E(X2)− E(2Xµ) + E(µ2) since E(A+B) = EA+ EB

= EX2 − 2µEX + µ2 since µ is a constant
= EX2 − 2µµ+ µ2

= EX2 − µ2

which is the expression required in the question.

Question 11. Find the mean and variance of the Exponential distribution, which has density

f(x) =

{
λe−λx if x ≥ 0

0 otherwise.

What is the probability that X takes a value in excess of two standard deviations from the mean?

First, a sanity check. Does this density make sense, i.e. does it sum to one?∫ ∞

−∞
f(x) dx =

∫ ∞

0

λe−λx dx =
[
−e−λx]∞

0
= −0− (−1) = 1.
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Now for the mean:

EX =

∫ ∞

−∞
xf(x) dx by definition of mean

=

∫ ∞

0

xλe−λx dx

=
[
x(−e−λx)

]∞
0

−
∫ ∞

0

1× (−e−λx) dx using integration by parts

= 0 +

∫ ∞

0

e−λx dx

=
[
− 1

λ
e−λx

]∞
0

=
1

λ
.

For the variance, let’s use the formula from the last question, VarX = EX2 − (EX)2. The first term is

EX2 =

∫ ∞

0

x2 λe−λx dx

=
[
x2(−e−λx)

]∞
0

+

∫ ∞

0

2x e−λx dx using integration by parts

= 0 +
2

λ

∫ ∞

0

xλe−λx dx inserting λ/λ so we can use the EX formula

=
2

λ
× 1

λ
=

2

λ2
,

giving

VarX = EX2 − (EX)2 =
2

λ2
−
( 1
λ

)2
=

1

λ2
.

The question also asks for the probability of a value in excess of two standard deviations from the mean. The wording is
ambiguous, but let’s interpret it as

P
(
|X − µ| > 2σ

)
where µ = EX =

1

λ
, σ =

√
VarX =

1

λ

= P(X < µ− 2σ) + P(X > µ+ 2σ)

= P
(
X <

1

λ
− 2

λ

)
+ P

(
X >

1

λ
+

2

λ

)
= P

(
X < − 1

λ

)
+ P

(
X >

3

λ

)
= P

(
X >

3

λ

)
since P(X < 0) = 0

=

∫ ∞

3/λ

λe−λx dx

=
[
−e−λx]∞

3/λ

= e−λ3/λ = e−3 ≈ 5%.

Question 12. Players A and B roll a six-sided die in turn. If a player rolls 1 or 2 that player wins and the game
ends; if a player rolls 3 the other player wins and the game ends; otherwise the turn passes to the other player. A has
the first roll. What is the probability (i) that B gets a first throw and wins on it? (ii) that A wins before A’s second
throw? (iii) that A wins, if the game is played until there is a winner?

From IA Maths page 234. For part (i),

P(B gets a first throw then wins) = P
(
A gets {4,5,6} then B gets {1,2}

)
=

3

6
× 2

6
=

1

6
.
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For part (ii),

P
(
A wins before A’s second throw

)
= P

(
A gets {1,2}

)
+ P

(
A gets {4,5,6} then B gets 3

)
=

2

6
+

3

6
× 1

6
=

5

12
.

For part (iii), we’ll break it down by the number of rounds played, where a single round is “A throws once and then maybe B
throws once”.

P(A wins game) =P(A wins first round)
+ P(play passes ABA then A wins round)
+ P(play passes ABABA then A wins round)
+ · · ·

Now,
P
(
play passes (AB)nA

)
=
[
P(A gets {4,5,6} then B gets {4,5,6})]n =

(3
6
× 3

6

)n
=

1

4n
.

Putting this all together,

P
(
A wins game

)
=

∞∑
n=0

P
(
play passes (AB)nA

)
P(A wins this round)

=

∞∑
n=0

1

4n
× 5

12
using answer to (ii)

=
5

12
× 1

1− 1/4
since 1 + r + r2 + · · · = 1/(1− r) for |r| < 1

=
5

12
× 4

3
=

5

9
.

Question 13. A coal bunker is to be constructed on the side of a house. Assuming that it is a cuboid of given
volume V , find the shape that minimizes the external surface area.

From IA Maths page 118. Let the three sides be x, y, and z, where x is measured horizontally going perpendicular to the
house side, y is measured horizontally and parallel to the house side, and z is measured vertically. Then the volume V and
the external surface area A are

V = xyz, A = xy + yz + 2xz.

We can eliminate z by writing z = V /xy, and considering

A(x, y) = xy +
V

x
+

2V

y
.

To find the stationary points of A, set the partial derivatives to zero:

∂A

∂x
= y − V

x2
= 0,

∂A

∂y
= x− 2V

y2
= 0.

From the first equation y = V /x2; substituting into the second x = 2x4/V . Since x 6= 0, we obtain V = 2x3 and so

x =
(V
2

)1/3
, y =

V

x2
= 2x, z =

V

xy
= x.

The optimal shape is therefore 1:2:1.

To check that A is minimized by this solution, we should check the Hessian, i.e. the matrix of second derivatives. (For IB
Data Science, this amount of calculation is overkill, and we’ll prefer numerical optimization. For Part II Machine Learning
and Bayesian Inference, this Hessian calculation is something you should be comfortable with.) The Hessian consists of

∂2A

∂x2
=

2V

x3
= 4,

∂2A

∂y2
=

4V

y3
= 1,

∂2A

∂x∂y
= 1.

In IA Maths we learnt a test using the Hessian to see if the stationary point is indeed a minimum:

∂2A

∂x2

∂2A

∂y2
>
( ∂2A

∂x∂y

)2
with ∂2A

∂x2
> 0 and ∂2A

∂y2
> 0

so A has a local minimum at this point.
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Question 14. More examples of finding stationary points. These two specific cases crop up again and again in data
science. You should be able to solve them blindfolded.
(a) Find the value of p ∈ [0, 1] that maximizes pa(1− p)b, where a and b are both positive.
(b) Find the value of p ∈ [0, 1] that maximizes log

(
pa(1− p)b

)
, where a and b are both positive.

(c) Find the values of µ ∈ R and σ > 0 that jointly maximize( 1√
2πσ2

)n

exp
(
−

n∑
i=1

(xi − µ)2

2σ2

)
(d) Find the values of µ ∈ R and ρ > 0 that jointly maximize( 1√

2πρ

)n

exp
(
−

n∑
i=1

(xi − µ)2

2ρ

)
What do you notice about the solutions to (a) versus (b), and about the solutions to (c) versus (d)?
[Note. On the printed handout, the formulae for (c) and (d) were not what I intended. I’ve updated them here.]

(a) The derivative is
d

dp
pa(1− p)b = apa−1(1− p)b − bpa(1− p)b−1 = pa−1(1− p)b−1(a(1− p)− bp

)
.

The maximum is at
d

dp
= 0 =⇒ a(1− p)− bp = 0 =⇒ p(a+ b) = a =⇒ p =

a

a+ b
.

(b) The derivative is
d

dp
log
(
pa(1− p)b

)
=

d

dp

(
a log p+ b log(1− p)

)
=

a

p
− b

1− p
.

The maximum is at
d

dp
= 0 =⇒ a

p
=

b

1− p
=⇒ a(1− p) = bp =⇒ p =

a

a+ b
.

These two must give the same answer. The only difference is a stretch of the y-axis, so of course the maximum is at the
same p value. (This works because x 7→ logx is a strictly increasing function.)

(c) We might as well take logs to make the maximization simpler, as in part (b):

log
{( 1√

2πσ2

)n
exp
(
−

n∑
i=1

(xi − µ)2

2σ2

)}
= −n

2
log 2π − n logσ − 1

2σ2

n∑
i=1

(xi − µ)2.

The maximum is when ∂/∂µ = 0 and ∂/∂σ = 0, i.e. when

∂

∂µ
: − 2

2σ2

n∑
i=1

(xi − µ) = 0 ⇒
∑

(xi − µ) = 0 ⇒
∑

xi = nµ ⇒ µ =

∑
xi

n

∂

∂σ
: − n

σ
+

1

σ3

n∑
i=1

(xi − µ)2 = 0 ⇒ nσ2 =
∑

(xi − µ)2 ⇒ σ =

√
1

n

∑
(xi − µ)2.

Normally it’s considered bad form to leave of the variables on the right hand side, in the way that the formula for σ
involves µ; but since it’s straightforward to evaluate µ we’ll let this be.

(d) As for part (c) we’ll take logs first:

log
{( 1√

2πρ

)n
exp
(
−

n∑
i=1

(xi − µ)2

2ρ

)}
= −n

2
log 2π − n

2
log ρ− 1

2ρ

n∑
i=1

(xi − µ)2.

The maximum is when ∂/∂µ = 0 and ∂/∂σ = 0, i.e. when
∂

∂µ
= 0 ⇒ µ =

∑
xi

n
exactly as before

∂

∂ρ
: − n

2ρ
− 1

2ρ2

∑
(xi − µ)2 = 0 ⇒ ρ =

1

n

∑
(xi − µ)2.

This is the same answer as (c), with the substitution ρ = σ2. There is a one-to-one mapping between σ > 0 and ρ > 0,
so it doesn’t matter which form of the optimization we do, we’ll find the same maximum either way.
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Question 15. Bayes’s rule says that, for any events A and B with P(B) > 0,

P(A |B) =
P(A) P(B |A)

P(B)
=

P(A) P(B|A)

P(A)P(B|A) + P(¬A)P(B|¬A)
.

There are four core definitions and laws in probability theory. Derive Bayes’s rule from them, and explain carefully
which of the four you are using at each step.
(a) P(Ω) = 1 where Ω is the entire sample space
(b) Conditional probability: P(A |B) = P(A ∩B)/P(B), when P(B) > 0

(c) Sum rule: If {B1, B2, . . . } partition Ω then P(A) =
∑

i P(A ∩Bi)
Law of total probability: P(A) =

∑
i P(A |Bi)P(Bi)

(d) A and B are said to be independent if P(A ∩B) = P(A)P(B)

Note: “{B1, B2, . . . } partition Ω” means the Bi are mutually exclusive and
∪

i Bi = Ω.

By the definition of conditional probability, definition (b), applied to (A |B),

P(A |B) =
PA ∩B

P(B)
when P(B) > 0.

Applying it again to (B |A), and rearranging,

P(B ∩A) = P(B |A)P(A).

(This applies when P(A) > 0 by the definition of conditional probability, and it applies when P(A) = 0 since then both sides
are equal to zero.) Putting these two together, we get the first version of Bayes’s rule:

P(A |B) =
P(A)P(B |A)

P(B)
.

Next, by the law of total probability, law (c): since A and ¬A partition Ω,

P(B) = P(B |A)P(A) + P(B | ¬A)P(¬A).

Substituting this into the first version of Bayes’s rule gives the second version of Bayes’s rule. (Note that the law of total
probability is just an application of the sum rule combined with the definition of conditional probability, so we could have derived
it that way instead.)
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