
Concepts in Programming Languages
Exercise Sheet

Andrej Ivašković (andrej.ivaskovic)
Compiled on: 20th April 2020

Before attempting the problems

This exercise sheet covers most of the examinable material in this course. Some
of the questions are more on the factual side, some require writing or under-
standing code, and others are discussion questions (which you should answer
by giving reference to the languages covered in the course, or reading additional
material). It would be inappropriate to work through all of these exercises in
only two supervisions; your supervisor should assign an adequate subset of
these exercises.

A lot of the concepts are best learnt by writing programs. I suggest you down-
load the following compilers/interpreters and write some code to see the ideas
covered in the course in action:

• Standard ML: you probably already have a Standard ML interpreter from
the Foundations of Computer Science course (most likely PolyML)

• OCaml: http://www.ocaml.org/docs/install.html

• Fortran: on Linux, install gfortran

• Lisp: either Common Lisp (clisp package on Linux) or Scheme (scheme
package on Linux)

• Pascal: https://www.freepascal.org/download.html

• Haskell: https://www.haskell.org/platform/ (for examples with mon-
ads)

Some of these questions have been taken from a set devised by Alan Mycroft.

1 The ancestors

Exercise 1.1. What do we mean by abstract machine when describing a pro-
gramming language? Outline the basic characteristics of the abstract machines
of:

1

http://www.ocaml.org/docs/install.html
https://www.freepascal.org/download.html
https://www.haskell.org/platform/

(a) FORTRAN (the original 1957 variant)

(b) LISP (the original McCarthy dialect)

(c) ALGOL 68

Exercise 1.2. One of the most important factors in the design of FORTRAN
was the ease of compiling it. Identify some aspects of the original FORTRAN
abstract machine that make it a language that can be compiled down to efficient
machine code. [Hint: think of the optimisations you mentioned in the Compiler
Construction course.]

Exercise 1.3. The two most famous variants of LISP are Common Lisp and
Scheme.

(a) Scheme has a smaller set of keywords and a much shorter specification
than Common Lisp. Why might either one of these design decisions be
desirable?

(b) Both of these modern dialects feature static scoping, whereas McCarthy’s
original used dynamic scoping. Give an example of an expression whose
differs depending on the type of scoping used.

Exercise 1.4. LISP features an eval keyword and an ability to quote expressions.

(a) Show how the following expressions are evaluated, step by step:
1 (eval ’(+ 1 2 (eval ’(+ 3 4))))
2 (cons 1 (list 2 3 (eval (cdr (cons 4 ’(cdr ’(5 6)))))))

(b) Give a brief overview how these constructs would allow you to construct
a LISP interpreter written in LISP.

(c) How do these features interact with scoping?

Exercise 1.5. LISP contains a funcall keyword, which is similar to apply, but
assumes the arguments of the function in question are not in a list. This means
that
(apply (lambda (x) (* x 2)) ’(3))

can be alternatively written as
(funcall (lambda (x) (* x 2)) 3))

Consider the following LISP program:
1 (defun mystery (f x)
2 (cond ((consp x) (cons (funcall f (car x))
3 (mystery f (cdr x))))
4 (T nil)
5)
6)
7 (mystery (lambda (x) (+ x 1)) ’(10 20 30))

What Standard ML function does mystery resemble? How would you write it
using apply instead of funcall?

2

Exercise 1.6.

(a) Give a brief overview of the following parameter passing mechanisms:
call by value, call by reference, call by value/result, call by name, call by text.
Make sure you use the terms aliasing, formal parameter and actual parameter
in your explanations.

(b) Write code in a block structured language that will produce all different
results depending on whether the parameter passing discipline is call by
valuem call by reference and call by value/result.

Exercise 1.7.

(a) What are Pascal discriminated unions, and what machine-level structures
they capture?

(b) Why are they unsafe?

(c) How can they be represented directly in C?

(d) Give similar, but safe, analogues in Java and ML.

(e) What would be a LISP analogue?

Exercise 1.8. What are the four distinguishing characteristics of object-oriented
programming languages? Explain through examples how are they desirable
when creating physics simulation software.

Exercise 1.9. A commonly used practice in object-oriented programming is
encapsulation. You have already informally defined it in Object-Oriented Pro-
gramming as ‘a class should expose a clean interface that allows full interaction
with it, but should expose nothing about its internal state or how it manipulates
it’. SIMULA 67 had no facilities to achieve encapsulation. How did Smalltalk
improve on this? Comment on why encapsulation might be desirable.

Exercise 1.10. Everything is an object in Smalltalk. This includes classes, and
there are no primitives. Discuss this design decision, while drawing on com-
parisons to other languages you have studied (in this course and in the Tripos).

Exercise 1.11. One of the most commonly used early programming languages
was COBOL. Edsger W. Dĳkstra famously wrote in How do we tell truths that
might hurt? (EWD498):

The use of COBOL cripples the mind; its teaching should, therefore,
be regarded as a criminal offense.

Write an explanation, in no more than 200 words, justifying or criticising both
Dĳkstra’s comment and COBOL being omitted from this course. You might
want to read a bit more about COBOL in order to answer this question.

Exercise 1.12. Brian Kernighan, in his essay Why Pascal is Not My Favorite
Programming Language criticises Pascal’s design decisions1: the language did

1This was Pascal as defined by Niklaus Wirth. Some of these criticisms have been addressed
since then.

3

not feature any break and continue statements. Provide an argument for and an
argument against this design decision.

2 Types

Exercise 2.1.

(a) What do we mean by strong typing?

(b) Showhowhard-to-find errors can result from the absence of strong typing.

(c) Distinguish static typing and dynamic typing.

(d) Does static or dynamic typing imply strong typing?

(e) Is Java completely statically typed or completely dynamically typed?

Exercise 2.2. We observe three different meanings of the word polymorphism in
this course. Show how they are exemplified in Java and give their alternative
names when they exist.

Exercise 2.3. Use the type inference algorithm described in the notes to find the
type of the following Standard ML expression:
fn x => fn y => fn z => z (x y) y

Exercise 2.4. In the context of subtyping, explain the words invariant, covariant
and contravariant.

Exercise 2.5. One of the criticisms of Pascal in Why Pascal is Not My Favorite
Programming Language is that array length is part of the array type.

(a) Give an example of a function that cannot be written in Pascal because of
this constraint, but can be written in Java and C.

(b) How would you still be able to write it using other language features?

(c) Is there any merit to this design decision?

(d) Suppose a programming language had a type array[k] of T, meaning
‘array with items of type T, of size at most k’, and this language defined a
subtyping relation:

array[p] of τ 4 array[q] of τ whenever p ≤ q

Discuss this approach.

Exercise 2.6. Why does this C++ code give exactly one type error?
1 class A {};
2 class B : public A {};
3

4 A **p;
5 B **q;
6

4

7 void foo() {
8 *p = *q;
9 }

10 void foo2() {
11 p = q;
12 }
13 int main() {
14 // initialise p and q before calling foo and/or foo2
15 return 0;
16 }

Why is this error message necessary for type safety?

Exercise 2.7. Why does this Java code raise an exception? What happens when
the various commented-out code is uncommented?

1 import java.util.ArrayList;
2 import java.util.Arrays;
3

4 class Fruit {
5 int weight;
6 }
7

8 class Apple extends Fruit {
9 boolean isRed;

10 }
11

12 public class Foo {
13 public static void main(String[] args) {
14 System.out.println("Starting...");
15 Fruit f = new Fruit();
16 Apple a = new Apple();
17

18 System.out.println("Simple casting:");
19 Fruit OKf = a;
20 // Apple ERRORa = f;
21

22 // olde-style arrays:
23 Apple[] av = new Apple[10];
24 Fruit[] fv = new Fruit[10];
25 // make ArrayLists containing the same elements as the arrays av,fv:
26 ArrayList <Apple> al = new ArrayList <Apple>(Arrays.asList(av));
27 ArrayList <Fruit> fl = new ArrayList <Fruit>(Arrays.asList(fv));
28 System.out.println("Checking: al.size="+al.size()+"; fl.size="+fl.size());
29

30 // now explore variance ...
31 // ArrayList <Fruit> ERRORq = al; //ERROR!
32 ArrayList <? extends Fruit> p = al;
33 ArrayList <Fruit> q = fl;
34 Fruit gotf = p.get(3);
35 // p.set(3,f); // ERROR!
36 q.set(3,f);
37

38 System.out.println("Olde-style arrays and variance:");
39 Fruit[] r = av;
40 r[3] = f;
41

5

42 System.out.println("Stopping");
43 }
44 }

Exercise 2.8. What is a scripting language?

Exercise 2.9.

(a) Explain how JavaScript code is executed in a browser.

(b) Explain how event-driven code is written in JavaScript using callbacks.

Exercise 2.10. Compare and contrast duck typing and dynamic typing. Why do
they tend to be features of scripting languages?

Exercise 2.11.

(a) Write a signature for a Queue abstract data type in Standard ML.

(b) Write two structures implementing this signature: one using a single list,
and another one using a pair of lists (with amortised constant time for its
operations, as covered in Foundations of Computer Science). You should use
the same kind of signature constraint for both of them.

(c) Did you use an opaque or transparent signature constraint? What differ-
ence does it make?

Exercise 2.12. How do Java interfaces differ from ML signatures, and classes
from structures?

3 Further concepts

Exercise 3.1. How can theoretical models of concurrency (such as CSP, CCS,
π-calculus and PRAM) provide insight about writing concurrent programs?

Exercise 3.2.

(a) Why might threads be hard for users and compilers to reason about?

(b) Why might Cilk’s construct be ‘better’?

Exercise 3.3. Investigate the notion of autovectorization and write a brief explan-
ation of what it is. How does it relate to OpenMP’s facilities for concurrency?

Exercise 3.4. [2014 Paper 3 Question 6, part (b)] You manage two junior pro-
grammers and overhear the following conversation:

A: “I don’t know why anyone needs a language other than Java, it
provides clean thread-based parallel programming.”

B: “Maybe, but I write my parallel programs in a functional pro-
gramming language because they are then embarrassingly parallel.”

6

Discuss the correctness of these statements and the extent to which they cover
the range of languages for parallel programming.

Exercise 3.5. Define the terms internal iteration and external iteration. Why might
one be better than the other for exploiting parallelism?

Exercise 3.6. What is the expression problem? How does it affect the ease of
making small changes to a program spread over many files?

Exercise 3.7.

(a) What is a monad? What are its operations?

(b) Distinguish between a side-effecting function, a pure function, and a ‘com-
putation’ value in a monad.

Exercise 3.8.

(a) Write a Standard ML signature MONAD that represents a monad. This signa-
ture should use a ’a m type to represent a monadic computation.

(b) Show that you can define a List structure that transparently matches this
signature.

(c) Use the operators in this monad in order to implement a concat function
of type ’a List.m List.m -> ’a List.m that ‘flattens’ a list of lists.

(d) The List monad is sometimes called ‘the non-determinism monad’. Ex-
plain why List is used to model non-deterministic computation.

Exercise 3.9. Assume the existence of an IO monad in a functional language.

(a) Give the types of expressions which:

(i) read a line from stdin;

(ii) read a line from a file specified by parameter f;

(iii) write a line to stdout;

(iv) write a line to a file specified by parameter f.

(b) Given values c and n of type unit IO and int respectively, give a program
which performs c

(i) twice;

(ii) n times.

Exercise 3.10. Howdoes a GADT enable users to represent data structuresmore
precisely than ML can? Why might this be useful?

Exercise 3.11.

(a) Rewrite foo into CPS (as foo_cps), assuming f, g are also rewritten into CPS
and f’s first argument is now a function what is expected to be in CPS:
fun foo b f g x = if b then 17

else f (fn y => g (g (y - 1))) (x + 1)

7

(b) Consider the following function declaration (in a hypothetical ML-like
language with reified continuations):

1 fun list_prod [] = raise Index
2 | list_prod [x] = x
3 | list_prod (x::xs) = callcc
4 (fn k => if x = 0 then k 0
5 else x * list_prod xs)

What is the purpose of callcc here? How can you achieve the same
behaviour using exceptions?

8

	The ancestors
	Types
	Further concepts

