
Distributed systems
Lecture 13: Distributed mutual exclusion,
distributed transactions, and replication

Michaelmas 2019
Dr Martin Kleppmann

(With thanks to Dr Robert N. M. Watson
and Dr Steven Hand)

1

Last time

• Logical time
– Lamport clocks (total order consistent with

causality)
– Vector clocks (can tell which events are

concurrent)

• Saw how we can build ordered multicast
– Messages between processes in a group
– Need to distinguish receipt and delivery
– Several ordering options: FIFO, causal or total

2

Distributed mutual exclusion

• In first part of course, saw need to coordinate
concurrent processes / threads
– In particular, considered how to ensure mutual exclusion:

allow only 1 thread in a critical section
• A variety of schemes possible:
– test-and-set locks; semaphores; monitors; active objects

• But most of these ultimately rely on hardware support
(atomic operations, or disabling interrupts…)
– not available across an entire distributed system

• Assuming we have some shared distributed resources,
how can we provide mutual exclusion in this case?

3

Solution #1: central lock server

• Nominate one process C as coordinator
– If Pi wants to enter critical section, simply sends lock

message to C, and waits for a reply
– If resource free, C replies to Pi with a grant message;

otherwise C adds Pi to a wait queue
– When finished, Pi sends unlock message to C
– C sends grant message to first process in wait queue

4

P1

P2 physical time

C

lock(L)

lock(L)

unlock(L)

gr
an

t(L
)

gr
an

t(L
)

ac
k(

L)

...execute critical section

Central lock server: pros and cons

• Central lock server has some good properties:
– Simple to understand and verify
– Live (providing delays are bounded, and no failure)
– Fair (if queue is fair, e.g. FIFO), and easily supports

priorities if we want them
– Decent performance: lock acquire takes one round-

trip, and release is ‘free’ with asynchronous messages
• But C can become a performance bottleneck…
• … and can’t distinguish crash of C from long wait
– can add additional messages, at some cost

5

Danger with distributed locks
• P1 is unresponsive. Time out the lock, or wait forever?

6

P1

P2

time

C

lock(L)

lock(L)gr
an

t(L
)

gr
an

t(L
)

tim
e

 o
ut

(L
)

...execute critical section

execute critical section

Res

access (Res)

• P1 may wake up and continue executing, not knowing that
its lock has timed out
– or request to access resource is delayed in the network
– in general, no preemption possible in distributed system

access (Res)

access (Res)

Solution #2: token passing

• Avoid central bottleneck
• Arrange processes in a logical ring
– Each process knows its predecessor & successor
– Single token passes continuously around ring
– Can only enter critical section when possess token;

pass token on when finished (or if don’t need to enter
critical section) 7

P0

P4
P3

P1

P2

P5

Initial token
generated by P0 Passes clockwise

around ‘ring’
If e.g. P4 wants to

enter CS, holds onto
token for duration

Token passing: pros and cons
• Several advantages:
– Simple to understand: only 1 process ever has token =>

mutual exclusion guaranteed by construction
– No central server bottleneck
– Liveness guaranteed (in the absence of failure)
– So-so performance (between 0 and N messages until a

waiting process enters, 1 message to leave)
• But:
– Doesn’t guarantee fairness (FIFO order)
– If a process crashes must repair ring (route around)
– And worse: may need to regenerate token – tricky!
– Constant network traffic

8

Solution #3: total-order multicast
• Due to Lamport [1978]
• Each process maintains its own copy of a request

queue
– Pi wants resource: send “request Pi” to all processes

(including itself)
– Pj receives “request Pi”: enqueue request in queue
– Pi releases resource: send “release Pi” to all processes
– Pj receives “release Pi”: remove Pi’s request from queue

• Resource is granted to Pi when “request Pi” is at head
of queue
– Due to total order delivery, all processes agree on order of

requests in the queue, and which one is at the head
• Can implement this using Lamport timestamps
– BUT: no progress if any one process fails! 9

Aside on consensus

• Locking is a specific example of a more general
problem: consensus
– Given a set of N processes in a distributed system, how can

we get them all to agree on something?
– e.g. agree on which process holds the lock

• Every process Pi proposes something (a value Vi)
• A correct solution to consensus must satisfy:
– Agreement: all nodes arrive at the same answer
– Validity: answer is one that was proposed by someone
– Termination: all nodes eventually decide

• e.g. Paxos + variants, Raft, Viewstamped Replication, …

15

“Consensus is impossible”
• Famous result due to Fischer, Lynch & Patterson (1985)
– Focuses on an asynchronous network (unbounded delays)

with at least one process failure
– Shows that it is possible to get an infinite sequence of

states, and hence never terminate
– Given the Internet is an asynchronous network, then this

seems to have major consequences!
• Not really:
– Result actually says we can’t always guarantee consensus,

not that we can never achieve consensus
– And in practice, we can use tricks to mask failures (such as

reboot, or replication), and to ignore asynchrony
– Have seen solutions already, and will see more later

16

Transaction processing systems
• Earlier looked at transactions:

– ACID properties
– Support for composite operations (i.e. a collection of reads and

updates to a set of objects)
• A transaction is atomic (“all-or-nothing”)

– If it commits, all operations are applied
– If it aborts, it’s as if nothing ever happened

• A committed transaction moves system from one
consistent state to another

• Transaction processing systems also provide:
– isolation (between concurrent transactions)
– durability (committed transactions survive a crash)

• Q: Can we bring the {scalability, fault tolerance, …}
benefits of distributed systems to transaction processing?

17

Distributed transactions
• Scheme described earlier was client/server:
– E.g., a program (client) accessing a database (server)

• However distributed transactions are those which
span multiple transaction processing servers

• e.g. exactly-once message processing
– Processing a message has side-effects: updating data in a

database
– Want changes in database to take effect iff message is

marked as processed
– Atomically commit side-effects (in database) and message-

delivery status (in message broker)
– If either fails, transaction is aborted in both systems, and

message processing can be safely retried

18

A model of distributed transactions

• Multiple servers (S1, S2, S3, …), each holding some objects
which can be read and written within client transactions

• Multiple concurrent clients (C1, C2, …) who perform
transactions that interact with one or more servers
– E.g. T1 reads x, z from S1, writes a on S2, reads+writes j on S3
– E.g. T2 reads i, j from S3, then writes z on S1

• A successful commit implies agreement at all servers
19

x=5
y=0
z=3
a=7
b=8
c=1

i=2
j=4

S1

S2

S3

T1 transaction {
if (x<2) abort;
a:= z;
j:= j + 1;

}

C1 C2

T2 transaction {
z:= (i+j);

}

Implementing distributed transactions

• Can build on top of solution for single server:
– e.g. use locking or shadowing to provide isolation
– e.g. use write-ahead log for durability

• Need to coordinate to either commit or abort
– Assume clients create unique transaction ID: TXID
– Uses TXID in every read or write request to a server Si

– First time Si sees a given TXID, it starts a tentative
transaction associated with that transaction ID

– When client wants to commit, must perform atomic
commit of all tentative transactions across all servers

20

Atomic commit protocols
• A naïve solution would have client simply invoke

commit(TXID) on each server in turn
– Will work only if no concurrent conflicting clients, every

server commits (or aborts), and no server crashes
• To handle concurrent clients, introduce a coordinator:
– A designated machine (can be one of the servers)
– Clients ask coordinator to commit on their behalf… and

hence coordinator can serialize concurrent commits
• To handle inconsistency/crashes, the coordinator:
– Asks all involved servers if they could commit TXID
– Servers Si reply with a vote Vi = { COMMIT, ABORT }
– If all Vi = COMMIT, coordinator multicasts doCommit(TXID)
– Otherwise, coordinator multicasts doAbort(TXID)

21

Two-phase commit (2PC)

• This scheme is called two-phase commit (2PC):
– First phase is voting: collect votes from all parties
– Second phase is completion: either abort or commit

• Doesn’t require ordered multicast, but needs reliability
– If server fails to respond by timeout, implicit vote to abort

• Once all ACKS received, inform client of commit success
22

C

S1
physical time

S3

canCommit(TxID)?

S2
YE

S
YE

S
YE

S

doCommit(TxID)

AC
K

AC
K

AC
K

2PC: additional details
• Client (or any server) can abort during execution:

simply multicasts doAbort(TXID) to all servers
– E.g., if client transaction explicitly aborts or server fails

• If a server votes NO, can abort at once locally
• If a server votes YES, it must be able to commit if

subsequently asked by coordinator:
– Before voting to commit, server will prepare by

writing entries into log and flushing to disk
– Records all requests from/responses to coordinator
– Hence even if crashes after voting to commit, will be

able to recover on reboot 23

2PC: coordinator crashes
• Coordinator must also persistently log events:
– Including initial message from client, requesting votes,

receiving replies, and final decision made
– Lets it reply if (restarted) client or server asks for outcome
– Also lets coordinator recover from reboot, e.g. re-send any

vote requests without responses, or reply to client
• One additional problem occurs if coordinator crashes

after phase 1, but before initiating phase 2:
– Servers will be uncertain of outcome…
– If voted to commit, will have to continue to hold locks, etc

• Can implement fault-tolerant distributed coordinator
using consensus algorithm (e.g. Paxos)

24

Replication

• Many distributed systems involve replication
– Multiple copies of some object stored at different servers
– Multiple servers capable of providing some operation(s)

• Three key advantages:
– Load-Balancing: if have many replicas, then can spread out

work from clients between them
– Lower Latency: if replicate an object/server close to a

client, will get better performance
– Fault-Tolerance: can tolerate the failure of some replicas

and still provide service
• Examples include DNS, web & file caching (& content-

distribution networks), replicated databases, …
25

Replication in a single system
• A good single-system example is RAID:

– RAID = Redundant Array of Inexpensive Disks
– Disks are cheap, so use several instead of just one
– If replicate data across disks, can tolerate disk crash
– If don’t replicate data, appearance of a single larger disk

• A variety of different configurations (levels)
– RAID 0: stripe data across disks, i.e. block 0 to disk 0, block 1 to

disk 1, block 2 to disk 0, and so on
– RAID 1: mirror (replicate) data across disks, i.e. block 0 written

on disk 0 and disk 1
– RAID 5: parity – write block 0 to disk 0, block 1 to disk 1, and

(block 0 XOR block 1) to disk 2
• Improved performance as can access disks in parallel
• With RAID 1, 5 also get fault-tolerance
• NB: More disks increase risk of single-disk failure while

reducing probability of fatal multi-disk failure 26

Distributed data replication
• Have some number of servers (S1, S2, S3, …)

– Each holds a copy of all objects
• Each client Ci can access any replica (any Si)

– E.g. clients can choose closest, or least loaded
• If objects are read-only, then trivial:

– Start with one primary server P having all data
– If client asks Si for an object, Si returns a copy
– (Si fetches a copy from P if it doesn’t already have a fresh one)

• Can easily extend to allow updates by P
– When updating object O, send invalidate(O) to all Si

• In essence, this is how web caching / CDNs work today
• But what if clients can perform updates?

27

Replication and consistency
• More challenging if clients can perform updates
• For example, imagine x has value 3 (in all replicas)
– C1 requests write(x, 5) from S4
– C2 requests read(x) from S3 (after C1’s request has

completed)
– What should occur?

• With strong consistency/linearizability, the system
behaves as if there was no replication:
– That is, C2 should read the value 5
– Requires coordination between all servers

• With weak consistency, C2 may get 3 or 5 (or …?)
– Harder to reason about, but better performance
– Recall close-to-open consistency in NFS

28

Replication for fault tolerance
• Replication for services, not just data objects
• Easiest is for a stateless service:
– Simply duplicate functionality over k machines
– Clients use any (e.g. closest), fail over to another

• Very few totally stateless services
– But e.g. many web apps have per-session soft state
– State generated per-client, lost when client leaves

• For example: multi-tier web farms (Facebook, …):

29

App server

App server

App server

Cache server

Cache server

Cache server

Database

Database

Web server

Web server

Web server

session soft state only consistent replication (transactions)

Passive replication
• Stateful services can use primary/backup:
– Backup server takes over in case of failure

• Based on persistent logs, system checkpoints:
– Periodically (or continuously) checkpoint primary
– If detect failure, start backup from checkpoint

• A few variants trade-off fail-over time:
– Cold-standby: backup server must start service

(software), load checkpoint & parse logs
– Warm-standby: backup server has software running in

anticipation, must load primary state
– Hot-standby: backup server mirrors primary work, but

output is discarded; on failure, enable output
30

Active replication
• Alternative: each of the replicas independently

executes each operation
• Use total order multicast:
– Client (or frontend server) sends each request to all

replicas by total order multicast
– All replicas receive operations in the same order, apply

them in the same order, then respond
• This is known as state machine replication:
– Replicas must act deterministically based on input
– Same input + same processing = same state
– Beware of sources of nondeterminism: random numbers,

current time, result order…
– Any errors/transaction aborts must also be made

deterministic. What if a replica crashes?
31

Summary + next time
• Distributed locking + distributed consensus
• Distributed transactions + atomic commit protocols
• Replication + consistency

• (More) replication and consistency
– Strong consistency
– Quorum-based systems
– Weaker consistency

• Consistency, availability and partitions
• Further replication models
• Amazon/Google case studies

32

