
Distributed systems
Lecture 12: Logical time, vector clocks, process 

groups, and ordered broadcast

Michaelmas 2019
Dr Martin Kleppmann

(With thanks to Dr Robert N. M. Watson 
and Dr Steven Hand)

1



Last time
• Clock skew and drift
• The clock synchronization problem
• Cristian’s Algorithm, Berkeley Algorithm, NTP
• The happens-before relation

• Saw physical time can’t be kept exactly in sync; 
instead, use logical clocks to track ordering 
between events:
– Defined a® b to mean ‘a happens-before b’
– Easy inside single process, & use causal ordering

(send ® receive) to extend relation across processes
2



Example

• Three processes (each with 2 events), and 2 messages
– Due to process order, we know a® b, c® d and e® f
– Causal order tells us b® c and d® f 
– And by transitivity a® c, a® d, a® f, b® d, b® f, c® f

• However, event e is concurrent with a, b, c and d
– a ∥ e, b ∥ e, c ∥ e, and d ∥ e

3

P1

P2 physical time

P3

a b

e f

c d

m1

m2

? ?

? ?



Causal ordering

• NB. “causal” ≠ “casual”!
– As in “cause and effect”

• e.g. P1 sends message m, P2 receives m
– receipt of m is caused by sending of m
– so sending event causally precedes receipt event

• e.g. Alice asks a question, Bob answers it
– observer would be confused if they hear the answer 

before hearing the question
• Causal order is any order that is compatible with 

happens-before relation

4



Logical time
• One early scheme due to Lamport [1978]
– Each process Pi has a logical clock Li

• Li can simply be an integer, initialized to 0
– Li is incremented on every local event e

• We write Li(e) or L(e) as the timestamp of e
• Distributed time is implemented by propagating 

timestamps via messages on the network:
– When Pi sends a message, it increments Li and copies the 

value into the packet
– When Pi receives a message from Pj, it extracts Lj and sets 

Li := max(Li, Lj), and then increments Li

• Guarantees that if a ® b, then L(a) < L(b)
• However if L(x) < L(y), this doesn’t imply x ® y !

5



Lamport Clocks: Example

• When P2 receives m1, it extracts timestamp 2 and sets 
its clock to max(0, 2) before increment

• Event timestamps are not unique
– E.g., event e has the same timestamp as event a

• Break ties by looking at process IDs, IP addresses, … 
– This gives a total order and globally unique timestamps

(assuming process IDs are globally unique)
– Concurrent events are ordered arbitrarily 6

P1

P2 physical time

P3

a b

e f

c d

0→1 1→2

0→3 3→4

0→1 1→5

m1 (v=2)

m2 (v=4)



Vector clocks

• With Lamport clocks, given L(a) and L(b), we  
can’t tell if a® b or b® a or a ∥ b

• One solution is vector clocks:
– An ordered list of logical clocks, one per-process
– Each process Pi maintains Vi[], initially all zeroes
– On a local event e, Pi increments Vi[i]

• If the event is message send, new Vi[] copied into packet
– If Pi receives a message from Pj then, for all k = 0, 1, …, 

it sets Vi[k] := max(Vj[k], Vi[k]), and increments Vi[i]
• Intuitively Vi[k] captures the number of events at 

process Pk that have been observed by Pi

7



Vector clocks: example

• When P2 receives m1, it merges entries from P1’s clock
– choose the maximum value in each position

• Similarly when P3 receives m2, it merges in P2’s clock
– this incorporates the changes from P1 that P2 already saw

• Vector clocks explicitly track transitive causal order:
timestamp of f captures the history of a, b, c & d

8

P1

P2 physical time

P3

c

e

a

(1,0,0)

b m1 (2,0,0)

f

d m2 (2,2,0)

(2,0,0)

(2,1,0) (2,2,0)

(0,0,1) (2,2,2)



Using vector clocks for ordering

• Can compare vector clocks piecewise:
– Vi = Vj iff Vi[k] = Vj[k] for k = 0, 1, 2, …
– Vi ≤ Vj iff Vi[k] ≤ Vj[k] for k = 0, 1, 2, …
– Vi < Vj iff Vi ≤ Vj and Vi ≠ Vj
– Vi ∥ Vj otherwise

• For any two event timestamps T(a) and T(b)
– if a ® b then T(a) < T(b) ; and
– if T(a) < T(b) then a ® b

• Hence can use timestamps to determine if there 
is a causal ordering between any two events
– i.e. determine whether a ® b, b ® a, or a ∥ b

9

e.g. [2,0,0] versus [0,0,1]

Does this seem familiar? Recall Time-Stamp Ordering
and Optimistic Concurrency Control for transactions



Consistent global state
• We have the notion of  “a happens-before b” (a® b) or 

“a is concurrent with b” (a ∥ b)
• What about ‘instantaneous’ system-wide state?
– distributed debugging, GC, deadlock detection, ...

• Chandy/Lamport introduced consistent cuts:
– draw a (possibly wiggly) line across all processes
– this is a consistent cut if the set of events (on the LHS) is 

closed under the happens-before relationship
– i.e. if the cut includes event x, then it also includes all 

events e which happened before x
• In practical terms, this means every delivered message 

included in the cut was also sent within the cut

10



Consistent cuts: example

• Vertical cuts are always consistent (due to the way we 
draw these diagrams), but some curves are ok too:
– providing we don’t include any receive events without 

their corresponding send events
• Intuition is that a consistent cut could have occurred 

during execution (depending on scheduling etc)
11

P1

P2 physical time

P3

a b

i l

f g

c d

e

k

h

j



Observing consistent cuts – sketch 
We will skip this material in lecture and it is not examinable 
– but it is helpful in thinking about distributed algorithms:
• Chandy/Lamport Snapshot Algorithm (1985) 
• Distributed algorithm to generate a snapshot of relevant 

system-wide state (e.g. all memory, locks held, …)
• Flood a special marker message M to all processes; causal 

order of flood defines the cut
• If Pi receives M from Pj and it has yet to snapshot: 

– It pauses all communication, takes local snapshot & sets Cij to {}
– Then sends M to all other processes Pk and starts recording Cik = 

{ set of all post local snapshot messages received from Pk }
• If Pi receives M from some Pk after taking snapshot

– Stops recording Cik, and saves alongside local snapshot
• Global snapshot comprises all local snapshots & Cij
• Assumes reliable, in-order messages, & no failures 12



Process groups
• Process groups are a key distributed-systems primitive:
– Set of processes on some number of machines
– Possible to multicast messages to all members
– Allows fault-tolerant systems even if some processes fail

• Membership can be fixed or dynamic
– If dynamic, have explicit join() and leave() primitives

• Groups can be open or closed:
– Closed groups only allow messages from members

• Internally can be structured (e.g. coordinator and set of 
slaves), or symmetric (peer-to-peer)
– Coordinator makes e.g. concurrent join/leave easier… 
– … but may require extra work to elect coordinator 

13
When we use “multicast” in distributed systems, we mean something stronger 

than conventional network datagram multicasting – do not confuse them



Group communication: assumptions

• Assume we have ability to send a message to 
multiple (or all) members of a group
– Don’t care if ‘true’ multicast (single packet sent, 

received by multiple recipients) or “netcast” (send set 
of messages, one to each recipient)

• Assume also that message delivery is reliable, 
and that messages arrive in bounded time
– But may take different amounts of time to reach 

different recipients
• Assume (for now) that processes don’t crash
• What delivery orderings can we enforce?

14



FIFO ordering

• With FIFO ordering, messages from process Pi must be 
received at each process Pj in the order they were sent
– E.g. in the above, each receiver must see m1 before it sees m3
– But other relative delivery orders are unconstrained – e.g., m1 vs 

m2, m2 vs. m4, etc.
• Looks easy, but is non-trivial on delays/retransmissions

– E.g. what if message m1 to P2 takes a loooong time?
• Receivers may need to buffer messages to ensure order

– Must “hold back” m3 until m1 has been delivered to P2
15

P1

P2
physical time

P4

m1

P3
m2

m3

m4

?



Receiving versus delivering

• Group communication middleware provides extra 
features above ‘basic’ communication
– e.g. providing reliability and/or ordering guarantees 

on top of IP multicast or netcast
• Assume that OS provides receive() primitive: 
– returns with a packet when one arrives on wire

• Received messages either delivered or held back:
– Delivered means inserted into delivery queue
– Held back means inserted into hold-back queue
– Held back messages are delivered later as the result of 

the receipt of another message… 

16



Implementing FIFO ordering

• Each process Pi maintains sequence number (SeqNo) Si
• New messages sent by Pi include Si, incremented after each send 

– Not including retransmissions, which retransmit with the same SeqNo!
• Pj maintains Sji: the SeqNo of the last delivered message from Pi

– If receive message from Pi with SeqNo ≠ (Sji+1), hold back
– When receive message with SeqNo = (Sji+1), enqueue for delivery
– Also deliver consecutive messages in hold-back queue (if present)
– Update Sji

• Apps. receive asynchronously as they read from delivery queue 17

delivery queue

hold-back queue

receive(M from Pi) {
s = SeqNo(M);
if (s == (Sji+1)) {

deliver(M); 
s = flush(hbq);
Sji = s;

} else holdback(M);
}

add M to delivery Q

anything deliverable?
can’t deliver – hold back

messages consumed by application

held back message delivered
Sji



Stronger orderings
• Can also implement FIFO ordering by just using a 

reliable FIFO transport like TCP/IP
• But the general ‘receive versus deliver’ model also 

allows us to provide stronger orderings:
– Causal ordering: if send(g, m1) ® send(g, m2), then all 

processes will see m1 before m2
– Total ordering: if any process delivers a message m1

before m2, then all processes will deliver m1 before m2

• Causal ordering implies FIFO ordering, since any two 
multicasts by the same process are related by ®

• Total ordering (as defined) does not imply FIFO (or 
causal) ordering, just says that all processes must agree
– Sometimes want FIFO-total ordering (combines the two)

18



Causal ordering

• e.g. order of messages in chat app (question®answer)
• Same example as before, but causal ordering requires:

(a) everyone must see m1 before m3 (as with FIFO), and
(b) everyone must see m1 before m2 (due to happens-before)

• Is this ok?
– No! m1 ® m2, but P2 sees m2 before m1
– To be correct, must hold back (delay) delivery of m2 at P2

19

P1

P2
physical time

P4

m1

P3
m2

m3

m4



Causal order and happens-before

• Happens-before is a strict partial order
– Irreflexive, transitive, asymmetric

• Any linear extension of happens-before is a 
causal order
– The order is consistent with causality

• For a given partial order, there may be many 
possible linear extensions
– Concurrent events can be ordered arbitrarily

20



Causal order message delivery

• When message m is received, need to decide:
– Does a message m’ exist that we have not yet 

received, such that m’ ® m?
– If yes, wait for m’ to be received and deliver it first
– If no, deliver m to the application now

• Solution: variant of vector clocks
– Increment only on message send, not on every 

event
– Detects relative ordering of messages, not events
– Gap in number sequence ⇒ wait for message

21



Have (0,0,0), received (1,0,1), so 
we know (1,0,0) is missing.

Hold back m2

Received m1 with clock (1,0,0);
now deliver m1 and then m2

Implementing causal ordering
• Like FIFO multicast, but with vector clocks 

instead of sequence numbers

22

• Some care needed with dynamic groups

P1

P2

m1

P3
m2

m1: (1,0,0)

m2: (1,0,1)



Total ordering
• Sometimes we want all processes to see exactly the 

same sequence of messages, in the same order
– particularly for state machine replication (see later)

• One option: use a dedicated sequencer process
– Other processes ask for global sequence no. (GSN), and 

then send with this in packet
– Use FIFO ordering algorithm, but on GSNs
– Problem: what if sequencer crashes/is unreachable?

• Another option: order by Lamport timestamp
– Problem: how do you know if you have seen all messages 

with timestamp < T?
– Need to wait for ≥ 1 message with timestamp ≥ T from 

every other process
23



Ordering and asynchrony
• FIFO ordering allows quite a lot of asynchrony
– E.g. any process can delay sending a message until it has a 

batch (to improve performance)
– Or can just tolerate variable and/or long delays

• Causal ordering also allows some asynchrony
– But must be careful queues don’t grow too large!

• Performance of total-order multicast not so good:
– Since every message delivery transitively depends on 

every prior one, delays holds up the entire system
– Instead tend to an (almost) synchronous model, but this 

performs poorly, particularly over the wide area
– Insight: total order multicast is equivalent to consensus

[Chandra and Toueg 1996]

24



Summary + next time

• Vector clocks
• Consistent global state + consistent cuts
• Process groups and reliable multicast
• Implementing order

• Distributed mutual exclusion
• Leader elections and distributed consensus
• Distributed transactions and commit protocols
• Replication and consistency

25


