Distributed systems
Lecture 12: Logical time, vector clocks, process groups, and ordered broadcast

Michaelmas 2019
Dr Martin Kleppmann
(With thanks to Dr Robert N. M. Watson and Dr Steven Hand)
Last time

• Clock skew and drift
• The clock synchronization problem
• Cristian’s Algorithm, Berkeley Algorithm, NTP
• The happens-before relation

• Saw physical time can’t be kept exactly in sync; instead, use logical clocks to track ordering between events:
 – Defined $a \rightarrow b$ to mean ‘a happens-before b’
 – Easy inside single process, & use causal ordering ($send \rightarrow receive$) to extend relation across processes
Example

• Three processes (each with 2 events), and 2 messages
 – Due to process order, we know \(a \rightarrow b, \ c \rightarrow d \) and \(e \rightarrow f \)
 – Causal order tells us \(b \rightarrow c \) and \(d \rightarrow f \)
 – And by transitivity \(a \rightarrow c, \ a \rightarrow d, \ a \rightarrow f, \ b \rightarrow d, \ b \rightarrow f, \ c \rightarrow f \)
• However, event \(e \) is **concurrent** with \(a, \ b, \ c \) and \(d \)
 – \(a \parallel e, \ b \parallel e, \ c \parallel e, \) and \(d \parallel e \)
Causal ordering

• NB. “causal” ≠ “casual”!
 – As in “cause and effect”
• e.g. P1 sends message m, P2 receives m
 – receipt of m is caused by sending of m
 – so sending event causally precedes receipt event
• e.g. Alice asks a question, Bob answers it
 – observer would be confused if they hear the answer before hearing the question
• Causal order is any order that is compatible with happens-before relation
Logical time

• One early scheme due to Lamport [1978]
 – Each process P_i has a logical clock L_i
 • L_i can simply be an integer, initialized to 0
 – L_i is incremented on every local event e
 • We write $L_i(e)$ or $L(e)$ as the timestamp of e

• **Distributed time** is implemented by propagating timestamps via messages on the network:
 – When P_i sends a message, it increments L_i and copies the value into the packet
 – When P_i receives a message from P_j, it extracts L_j and sets $L_i := \max(L_i, L_j)$, and then increments L_i

• Guarantees that if $a \rightarrow b$, then $L(a) < L(b)$
• However if $L(x) < L(y)$, this doesn’t imply $x \rightarrow y$!
Lamport Clocks: Example

- When P_2 receives m_1, it extracts timestamp 2 and sets its clock to $\max(0, 2)$ before increment.
- Event timestamps are not unique
 - E.g., event e has the same timestamp as event a.
- Break ties by looking at process IDs, IP addresses, ...
 - This gives a total order and globally unique timestamps
 (assuming process IDs are globally unique).
 - Concurrent events are ordered arbitrarily.
Vector clocks

• With Lamport clocks, given \(L(a) \) and \(L(b) \), we can’t tell if \(a \rightarrow b \) or \(b \rightarrow a \) or \(a \parallel b \)

• One solution is **vector clocks**:
 – An **ordered list of logical clocks**, one per-process
 – Each process \(P_i \) maintains \(V_i[] \), initially all zeroes
 – On a local event \(e \), \(P_i \) increments \(V_i[i] \)
 • If the event is message send, new \(V_i[] \) copied into packet
 – If \(P_i \) receives a message from \(P_j \) then, for all \(k = 0, 1, \ldots \), it sets \(V_i[k] := \max(V_j[k], V_i[k]) \), and increments \(V_i[i] \)

• Intuitively \(V_i[k] \) captures the number of events at process \(P_k \) that have been observed by \(P_i \)
Vector clocks: example

- When **P2** receives **m₁**, it **merges** entries from **P1**’s clock
 – choose the maximum value in each position
- Similarly when **P3** receives **m₂**, it merges in **P2**’s clock
 – this incorporates the changes from **P1** that **P2** already saw
- Vector clocks **explicitly track transitive causal order**: timestamp of **f** captures the history of **a, b, c & d**
Using vector clocks for ordering

• Can compare vector clocks piecewise:
 – \(V_i = V_j \) iff \(V_i[k] = V_j[k] \) for \(k = 0, 1, 2, \ldots \)
 – \(V_i \leq V_j \) iff \(V_i[k] \leq V_j[k] \) for \(k = 0, 1, 2, \ldots \)
 – \(V_i < V_j \) iff \(V_i \leq V_j \) and \(V_i \neq V_j \)
 – \(V_i \parallel V_j \) otherwise

• For any two event timestamps \(T(a) \) and \(T(b) \)
 – if \(a \rightarrow b \) then \(T(a) < T(b) \); and
 – if \(T(a) < T(b) \) then \(a \rightarrow b \)

• Hence can use timestamps to determine if there is a causal ordering between any two events
 – i.e. determine whether \(a \rightarrow b, b \rightarrow a, \) or \(a \parallel b \)

Does this seem familiar? Recall Time-Stamp Ordering and Optimistic Concurrency Control for transactions
Consistent global state

- We have the notion of “a happens-before b” (a \rightarrow b) or “a is concurrent with b” (a \parallel b)
- What about ‘instantaneous’ system-wide state?
 - distributed debugging, GC, deadlock detection, ...
- Chandy/Lamport introduced consistent cuts:
 - draw a (possibly wiggly) line across all processes
 - this is a consistent cut if the set of events (on the LHS) is closed under the happens-before relationship
 - i.e. if the cut includes event x, then it also includes all events e which happened before x
- In practical terms, this means every delivered message included in the cut was also sent within the cut
Consistent cuts: example

- Vertical cuts are always consistent (due to the way we draw these diagrams), but some curves are ok too:
 - providing we don’t include any receive events without their corresponding send events
- Intuition is that a consistent cut *could* have occurred during execution (depending on scheduling etc)
Observing consistent cuts – sketch

We will skip this material in lecture and it is not examinable – but it is helpful in thinking about distributed algorithms:

• Chandy/Lamport Snapshot Algorithm (1985)
• Distributed algorithm to generate a snapshot of relevant system-wide state (e.g. all memory, locks held, ...)
• Flood a special marker message \(M \) to all processes; causal order of flood defines the cut
• If \(P_i \) receives \(M \) from \(P_j \) and it has yet to snapshot:
 – It pauses all communication, takes local snapshot & sets \(C_{ij} \) to \{\}
 – Then sends \(M \) to all other processes \(P_k \) and starts recording \(C_{ik} = \{ \text{set of all post local snapshot messages received from } P_k \} \)
• If \(P_i \) receives \(M \) from some \(P_k \) after taking snapshot
 – Stops recording \(C_{ik} \), and saves alongside local snapshot
• Global snapshot comprises all local snapshots & \(C_{ij} \)
• Assumes reliable, in-order messages, & no failures
Process groups

• **Process groups** are a key distributed-systems primitive:
 – Set of processes on some number of machines
 – Possible to **multicast** messages to all members
 – Allows fault-tolerant systems even if some processes fail

• Membership can be **fixed** or **dynamic**
 – If dynamic, have explicit `join()` and `leave()` primitives

• Groups can be **open** or **closed**:
 – Closed groups only allow messages from members

• Internally can be structured (e.g. coordinator and set of slaves), or symmetric (peer-to-peer)
 – Coordinator makes e.g. concurrent join/leave easier...
 – ... but may require extra work to **elect** coordinator

When we use “**multicast**” in distributed systems, we mean something stronger than conventional network datagram multicasting – do not confuse them.
Group communication: assumptions

• Assume we have ability to send a message to multiple (or all) members of a group
 – Don’t care if ‘true’ multicast (single packet sent, received by multiple recipients) or “netcast” (send set of messages, one to each recipient)

• Assume also that message delivery is **reliable**, and that messages arrive in **bounded time**
 – But may take different amounts of time to reach different recipients

• Assume (for now) that processes don’t crash

• What delivery **orderings** can we enforce?
FIFO ordering

- With **FIFO ordering**, messages from process P_i must be received at each process P_j in the order they were sent
 - E.g. in the above, each receiver must see m_1 before it sees m_3
 - But other relative delivery orders are unconstrained – e.g., m_1 vs m_2, m_2 vs. m_4, etc.

- Looks easy, but is non-trivial on delays/retransmissions
 - E.g. what if message m_1 to P_2 takes a loooong time?

- Receivers may need to **buffer** messages to ensure order
 - Must “hold back” m_3 until m_1 has been delivered to $P_2
Receiving versus delivering

• Group communication middleware provides extra features above ‘basic’ communication
 – e.g. providing reliability and/or ordering guarantees on top of IP multicast or netcast
• Assume that OS provides `receive()` primitive:
 – returns with a packet when one arrives on wire
• **Received** messages either delivered or held back:
 – **Delivered** means inserted into `delivery queue`
 – **Held back** means inserted into `hold-back queue`
 – Held back messages are delivered later as the result of the receipt of another message...
Implementing FIFO ordering

- Each process P_i maintains sequence number (SeqNo) S_i
- New messages sent by P_i include S_i, incremented after each send
 - Not including retransmissions, which retransmit with the same SeqNo!
- P_j maintains S_{ji}: the SeqNo of the last *delivered* message from P_i
 - If receive message from P_i with $\text{SeqNo} \neq (S_{ji}+1)$, *hold back*
 - When receive message with $\text{SeqNo} = (S_{ji}+1)$, *enqueue for delivery*
 - Also *deliver consecutive messages* in hold-back queue (if present)
 - Update S_{ji}
- Apps. receive asynchronously as they read from delivery queue

```
receive(M from Pi) {
  s = SeqNo(M);
  if (s == (Sji+1)) {
    deliver(M);
    s = flush(hbq);
    Sji = s;
  } else holdback(M);
}
```
Stronger orderings

• Can also implement FIFO ordering by just using a reliable FIFO transport like TCP/IP
• But the general ‘receive versus deliver’ model also allows us to provide stronger orderings:
 – **Causal ordering**: if \(\text{send}(g, m_1) \rightarrow \text{send}(g, m_2) \), then all processes will see \(m_1 \) before \(m_2 \)
 – **Total ordering**: if any process delivers a message \(m_1 \) before \(m_2 \), then all processes will deliver \(m_1 \) before \(m_2 \)
• Causal ordering implies FIFO ordering, since any two multicasts by the same process are related by \(\rightarrow \)
• Total ordering (as defined) does *not* imply FIFO (or causal) ordering, just says that all processes must agree
 – Sometimes want **FIFO-total** ordering (combines the two)
Causal ordering

• e.g. order of messages in chat app (question→answer)
• Same example as before, but causal ordering requires:
 (a) everyone must see \(m_1 \) before \(m_3 \) (as with FIFO), and
 (b) everyone must see \(m_1 \) before \(m_2 \) (due to happens-before)
• Is this ok?
 – No! \(m_1 \rightarrow m_2 \), but \(P2 \) sees \(m_2 \) before \(m_1 \)
 – To be correct, must hold back (delay) delivery of \(m_2 \) at \(P2 \)
Causal order and happens-before

• Happens-before is a **strict partial order**
 – Irreflexive, transitive, asymmetric

• Any **linear extension** of happens-before is a causal order
 – The order is *consistent with causality*

• For a given partial order, there may be many possible linear extensions
 – Concurrent events can be ordered arbitrarily
Causal order message delivery

• When message m is received, need to decide:
 – Does a message m' exist that we have not yet received, such that $m' \rightarrow m$?
 – If yes, wait for m' to be received and deliver it first
 – If no, deliver m to the application now

• Solution: variant of vector clocks
 – Increment only on *message send*, not on every event
 – Detects relative ordering of *messages*, not events
 – Gap in number sequence \Rightarrow wait for message
Implementing causal ordering

• Like FIFO multicast, but with vector clocks instead of sequence numbers

• Some care needed with dynamic groups
Total ordering

- Sometimes we want all processes to see exactly the same sequence of messages, in the same order
 - particularly for **state machine replication** (see later)
- One option: use a **dedicated sequencer process**
 - Other processes ask for **global sequence no.** (GSN), and then send with this in packet
 - Use FIFO ordering algorithm, but on GSNs
 - Problem: what if sequencer crashes/is unreachable?
- Another option: order by **Lamport timestamp**
 - Problem: how do you know if you have seen all messages with timestamp < T?
 - Need to wait for ≥ 1 message with timestamp ≥ T from every other process
Ordering and asynchrony

• FIFO ordering allows quite a lot of asynchrony
 – E.g. any process can delay sending a message until it has a batch (to improve performance)
 – Or can just tolerate variable and/or long delays
• Causal ordering also allows some asynchrony
 – But must be careful queues don’t grow too large!
• Performance of total-order multicast not so good:
 – Since every message delivery transitively depends on every prior one, delays holds up the entire system
 – Instead tend to an (almost) synchronous model, but this performs poorly, particularly over the wide area
 – Insight: total order multicast is equivalent to consensus [Chandra and Toueg 1996]
Summary + next time

• Vector clocks
• Consistent global state + consistent cuts
• Process groups and reliable multicast
• Implementing order

• Distributed mutual exclusion
• Leader elections and distributed consensus
• Distributed transactions and commit protocols
• Replication and consistency