
Distributed systems
Lecture 11: Clocks, physical and logical time

Michaelmas 2019
Dr Martin Kleppmann

(With thanks to Dr Robert N. M. Watson
and Dr Steven Hand)

1

Client-server interaction: summary

• Server handles requests from client
– Simple request/response protocols (like HTTP)

useful, but lack language integration
– RPC schemes (SunRPC, DCE RPC) address this
– OOM schemes (CORBA, DCOM, RMI) extend RPC

to understand objects, types, interfaces, exns, …
• Recent WWW developments move away from

traditional RPC/RMI:
– Avoid explicit IDLs since can slow evolution
– Enable asynchrony, or return to request/response

2

Representational State Transfer (REST)

• AJAX still does RPC (just asynchronously)
• Is a procedure call / method invocation really the

best way to build distributed systems?
• Representational State Transfer (REST) is an

alternative ‘paradigm’ (or a throwback?)
– Resources have a name: URL or URI
– Manipulate them via POST (create), GET (select),

PUT (create/overwrite), and DELETE (delete)
– More recently added: PATCH (partial update in place)
– Send state along with operations

• Very widely used today (Amazon, Flickr, Twitter)

3

Clocks and distributed time

• Distributed systems need to be able to:
– order events produced by concurrent processes;
– synchronize senders and receivers of messages;
– serialize concurrent accesses to shared objects; and
– generally coordinate joint activity

• This can be provided by some sort of clock:
– physical clocks keep time of day

• (must be kept consistent across multiple nodes – why?)
– logical clocks keep track of event ordering

• NB. Clock in digital electronics (oscillator) ≠ clock
in distributed systems (source of timestamps)

4

Physical clock technology

• Quartz Crystal Clocks (1929)
– resonator shaped like a tuning fork
– laser-trimmed to vibrate at 32,768 Hz
– standard resonators accurate to 6ppm at 31°C... so

will gain/lose around 0.5 seconds per day
– stability better than accuracy (about 2s/month)
– best resonators get accuracy of ~1s in 10 years

• Atomic clocks (1948)
– count transitions of the cesium 133 atom
– 9,192,631,770 periods defined to be 1 second
– accuracy is better than 1 second in 6 million years...
– relativity can’t be ignored: think satellites

5

Coordinated Universal Time (UTC)

• Physical clocks provide ticks but we want to know
the actual time of day
– determined by astronomical phenomena

• Several variants of universal time
– UT0: mean solar time on Greenwich meridian
– UT1: UT0 corrected for polar motion; measured via

observations of quasars, laser ranging, & satellites
– UT2: UT1 corrected for seasonal variations
– UTC: civil time, tracked using atomic clocks, but kept

within 0.9s of UT1 by occasional leap seconds
6

Computer clocks

• Typically have a Real-Time Clock (RTC)
– CMOS clock driven by a quartz oscillator
– battery-backed so continues when power is off

• Also have range of other clocks (PIT, ACPI,
HPET, TSC, ...), mostly higher frequency
– free running clocks driven by quartz oscillator
– mapped to real time by OS at boot time
– programmable to generate interrupts after some

number of ticks (~= some amount of real time)
7

Operating-system use of clocks

• OSes use time for many things
– Periodic events – e.g., time sharing, statistics, at, cron
– Local I/O functions – e.g., peripheral timeouts; entropy
– Network protocols – e.g., TCP DELACK, retries, keep-alive
– Cryptographic certificate/ticket generation, expiration
– Performance profiling and sampling features

• Ticks trigger interrupts
– Historically, timers at fixed intervals (e.g., 100Hz)
– Now, tickless: timer reprogrammed for next event
– Saves energy, CPU resources – especially as cores scale up

8

Which of these require physical time vs logical time? What will happen to
each if the real-time clock drifts or steps due to synchronization?

The clock synchronization problem

• In distributed systems, we’d like all the different
nodes to have the same notion of time, but
– quartz oscillators oscillate at slightly different

frequencies (time, temperature, manufacture)
• Hence clocks tick at different rates:
– create ever-widening gap in perceived time
– this is called clock drift

• The difference between two clocks at a given
point in time is called clock skew

• Clock synchronization aims to minimize clock
skew between two (or a set of) different clocks

9

Clock skew and clock drift

February 18, 2012
08:00:00

10

08:00:00 08:00:00

NB: Steve Hand’s watches, not mine.

Clock skew and clock drift

11

March 23, 2012
08:00:00

08:01:24 08:01:48
Skew = 84 seconds
Drift = 84s / 34 days

= +2.47s per day
= 28.6 ppm

Skew = 108 seconds
Drift = 108s / 34 days

= +3.18s per day
= 36.8 ppm

Dealing with drift

• A clock can have positive or negative drift with
respect to a reference clock (e.g. UTC)
– Need to [re]synchronize periodically

• Can’t just set clock to ‘correct’ time
– Jumps (particularly backward!) can confuse apps

• Instead aim for gradual compensation
– If clock fast, make it run slower until correct
– If clock slow, make it run faster until correct

12

Compensation
• Most systems relate real-time to cycle counters or

periodic interrupt sources
– E.g. calibrate CPU Time-Stamp Counter (TSC) against

CMOS Real-Time Clock (RTC) at boot, and compute scaling
factor (e.g. cycles per ms)

– Can now convert TSC differences to real-time
– Similarly can determine how much real-time passes

between periodic interrupts: call this delta
– On interrupt, add delta to software real-time clock

• Making small changes to delta gradually adjusts time
– Once synchronized, change delta back to original value
– (Or try to estimate drift & continually adjust delta)
– Minimise time discontinuities from stepping

13

Obtaining accurate time

• Of course, need some way to know correct time
(e.g. UTC) in order to adjust clock!
– could attach a GPS receiver (or atomic clock) to

computer, and get ±0.1ms accuracy…
– …but too expensive/clunky for general use
– (RF in server rooms and data centres non-ideal)

• Instead can ask some machine with a more
accurate clock over the network: a time server
– e.g. send RPC getTime() to server
– What’s the problem here?

14

Cristian’s Algorithm (1989)

• Attempt to compensate for network delays
– Remember local time just before sending: T0
– Server gets request, and puts Ts into response
– When client receives reply, notes local time: T1
– Correct time is then approximately (Ts + (T1- T0) / 2)

(assumes symmetric behaviour...)

15

client

server
time

request

T0

reply

T1

Ts

Cristian’s Algorithm: Example

• RTT = 460ms, so one way delay is [approx] 230ms.
• Estimate correct time as (08:02:04.325 + 230ms) = 08:02:04.555
• Client gradually adjusts local clock to gain 2.425 seconds

16

C08:02:01.670

S

C08:02:02.130

08:02:04.325

T0

T1

Ts

08:02:04.325

What’s the time?

Tim
e

Berkeley Algorithm (1989)

• Don’t assume have an accurate time server
• Try to synchronize a set of clocks to the average
– One machine, M, is designated the master
– M periodically polls all other machines for their time
– (can use Cristian’s technique to account for delays)
– Master computes average (including itself, but ignoring

outliers), and sends an adjustment to each machine

M

A B C

08:01:12

08
:0

2:
01

11:44:31

08:01:17 M

A B C

+0
0:00:18

-0
0:

00
:3

1 -03:43:01

Avg = (01:17+01:12+02:01)/3
= (04:30/3) = 01:30

17

+00:00:13

Network Time Protocol (NTP)

• Previous schemes designed for LANs; in practice
today’s systems use NTP:
– Global service designed to enable clients to stay

within (hopefully) a few ms of UTC
• Hierarchy of clocks arranged into strata
– Stratum0 = atomic clocks (or maybe GPS, GEOS)
– Stratum1 = servers directly attached to stratum0 clock
– Stratum2 = servers that synchronize with stratum1
– … and so on

• Timestamps made up of seconds and ‘fraction’
– e.g. 32 bit seconds-since-epoch; 32 bit ‘picoseconds’

18

NTP algorithm

• UDP/IP messages with slots for four timestamps
– systems insert timestamps at earliest/latest opportunity

• Client computes:
– Offset O = ((T1-T0) + (T2-T3)) / 2
– Delay D = (T3-T0) – (T2-T1)

• Relies on symmetric messaging delays to be correct
(but now excludes variable processing delay at server)

19

client

server
timeT1

request

T0

reply

T3

T2

Measured difference in average
timestamps: (T1+T2)/2 – (T0+T3)/2

Estimated two-way communication
delay minus processing time

NTP example

• First request/reply pair:
– Total message delay is ((6-3) - (38-37)) = 2
– Offset is ((37-3) + (38-6)) / 2 = 33

• Second request/reply pair:
– Total message delay is ((13-8) - (45-42)) = 2
– Offset is ((42-8) + (45-13)) / 2 = 33

20

client

server
time

request reply

02 03 04 05 06 07 08 09 10 11 12 13

35 36 37 38 39 40 41 42 43 44 45 46

NTP: additional details (1)

• NTP uses multiple requests per server
– Remember <offset, delay> in each case
– Calculate the filter dispersion of the offsets & discard

outliers
– Chooses remaining candidate with the smallest delay

• NTP can also use multiple servers
– Servers report synchronization dispersion = estimate

of their quality relative to the root (stratum 0)
– Combined procedure to select best samples from best

servers (see RFC 5905 for the gory details)
21

NTP: additional details (2)

• Various operating modes:
– Broadcast (“multicast”): server advertises current

time
– Client-server (“procedure call”): as described on

previous slides
– Symmetric: between a set of NTP servers

• Security is supported
– Authenticate server, prevent replays
– Cryptographic cost compensated for

22

Physical clocks: summary

• Physical devices exhibit clock drift
– Even if initially correct, they tick too fast or too slow,

and hence time ends up being wrong
– Drift rates depend on the specific device, and can vary

with time, temperature, acceleration, …
• Instantaneous difference between clocks is clock

skew
• Clock synchronization algorithms attempt to

minimize the skew between a set of clocks
– Decide upon a target correct time (atomic, or average)
– Communicate to agree, compensating for delays
– In reality, will still have 1-10ms skew after sync ;-(

23

Ordering

• One use of time is to provide ordering
– If I withdrew £100 cash at 23:59.44…
– And the bank computes interest at 00:00.00…
– Then interest calculation shouldn’t include the £100

• But in distributed systems we can’t perfectly
synchronize time => cannot use this for ordering
– Clock skew can be large, and may not be trusted
– And over large distances, relativistic events mean that

ordering depends on the observer
– Message sent at T = 2.0 s (according to sender clock)

may be received at T = 1.9 s (according to recipient)
24

The “happens-before” relation

• Often don’t need to know when event a occurred
– Just need to know if a occurred before or after b

• Define the happens-before relation, a ® b
– If events a and b are within the same process, then

a® b if a occurs with an earlier local timestamp
– Messages between processes are ordered causally,

i.e. the event send(m) ® the event receive(m)
– Transitivity: i.e. if a® b and b® c, then a® c

• Note that this only provides a partial order:
– Possible for neither a® b nor b® a to hold
– We say that a and b are concurrent and write a ∥ b

25

Example

• Three processes (each with 2 events), and 2 messages
– Due to process order, we know a® b, c® d and e® f
– Causal order tells us b® c and d® f
– And by transitivity a® c, a® d, a® f, b® d, b® f, c® f

• However, event e is concurrent with a, b, c and d

26

P1

P2 physical time

P3

a b

e f

c d

m1

m2

? ?

? ?

Summary + next time

• Clock skew and drift
• The clock synchronization problem
• Cristian’s Algorithm, Berkeley Algorithm, NTP
• Logical time via the happens-before relation

• Vector clocks
• Consistent cuts
• Group communication
• Enforcing ordering vs. asynchrony
• Distributed mutual exclusion

27

