
Concurrent systems
Lecture 5: Liveness and Priority Guarantees

1

Dr David J Greaves
(Thanks to Dr Robert N. M. Watson)

Reminder from last time

• Multi-Reader Single-Writer (MRSW) locks

• Alternatives to semaphores/locks:
– Conditional critical regions (CCRs)

– Monitors

– Condition variables

– Signal-and-wait vs. signal-and-continue semantics

• Concurrency primitives in practice

• Concurrency primitives wrap-up

2

From last time: primitives summary

• Concurrent systems require means to ensure:

– Safety (mutual exclusion in critical sections), and

– Progress (condition synchronization)

• Spinlocks (busy wait); semaphores; CCRs and monitors

– Hardware primitives for synchronisation

– Signal-and-Wait vs. Signal-and-Continue

• Many of these are still used in practice

– Subtle minor differences can be dangerous

– Require care to avoid bugs – e.g., “lost wakeups”

• More detail on implementation in additional material on web page.

3

Progress is particularly difficult, in large part because of
primitives themselves, which is the topic of this lecture

Progress is particularly difficult, in large part because of
primitives themselves, which is the topic of this lecture

This time

• Liveness properties

• Deadlock
– Requirements

– Resource allocation graphs and detection

– Prevention – the Dining Philosophers Problem – and
recovery

• Thread priority and the scheduling problem

• Priority inversion

• Priority inheritance

4

Liveness properties

• From a theoretical viewpoint must ensure that
we eventually make progress, i.e. want to avoid
– Deadlock (threads sleep waiting for one another), and

– Livelock (threads execute but make no progress)

• Practically speaking, also want good performance
– No starvation (single thread must make progress)

– (more generally may aim for fairness)

– Minimality (no unnecessary waiting or signalling)

• The properties are often at odds with safety :-(

5

(Compositional) Deadlock

• Set of k threads go asleep and cannot wake up
– each can only be woken by another who’s asleep!

• Real-life example (Kansas, 1920s):
“When two trains approach each other at a crossing, both shall come to
a full stop and neither shall start up again until the other has gone.”

• In concurrent programs, tends to involve the taking of mutual
exclusion locks, e.g.:

6

// thread 2
lock(Y);
 ...
 if(<cond>) {
 lock(X);
 ...

// thread 2
lock(Y);
 ...
 if(<cond>) {
 lock(X);
 ...

// thread 1
lock(X);
 ...
 lock(Y);
 // critical section
 unlock(Y);

// thread 1
lock(X);
 ...
 lock(Y);
 // critical section
 unlock(Y);

Risk of deadlock if
both threads get here

simultaneously

Requirements for deadlock

• Like all concurrency bugs, deadlock may be rare (e.g. imagine
<cond> is mostly false)

• In practice there are four necessary conditions
1. Mutual Exclusion: resources have bounded #owners

2. Hold-and-Wait: can acquire Rx and wait for Ry

3. No Preemption: keep Rx until you release it

4. Circular Wait: cyclic dependency

• Require all four to hold for deadlock
–. But most modern systems always satisfy 1, 2, 3

• Tempting to think that his applies only to locks …
–. But it also can occur for many other resource classes whose

allocation meets conditions: memory, CPU time, …

7

Resource allocation graphs
• Graphical way of thinking about deadlock:
– Circles are threads (or processes)

– Boxes are single-owner resources (e.g. mutexes)

– Edges show lock hold and wait conditions

– A cycle means we (will) have deadlock.

8

T1 T3T2

Ra Rb Rc Rd

Thick line R->T means
T holds resource R

Dashed line T->R
T wants resource R

Deadlock!Deadlock!

Resource allocation graphs (2)

• Can generalize to resources which can have K
distinct users (c/f semaphores)

• Absence of a cycle means no deadlock…
– but presence only means may encounter deadlock, e.g.

9

Ra(1) Rb(2) Rc(2) Rd(1)

T1 T3T2 T4

Resource in
quantity 1

Resource in
quantity 1

Resource in quantity 2Resource in quantity 2
No deadlock: If T1 releases Rb, then

T2’s acquire of Rb can be satisfied

No deadlock: If T1 releases Rb, then
T2’s acquire of Rb can be satisfied

Resource allocation graphs (3)

• Another generalisation is for threads to have several
possible ways forward and that are able to select
according to which locks have already been taken.

• Read up on generalised AND-OR wait-for graphs for
those interested (link will be on course web site).

• [This slide non-examinable].

Deadlock Design Approaches

1. Ensure it never happens
– Deadlock (static) prevention (using code structure rules)

– Deadlock (dynamic) avoidance (cycle finding or Banker’s Alg)

2. Let it happen, but recover
– Deadlock (dynamic) detection & recovery

3. Ignore it!
– The so-called “Ostrich Algorithm” ;-)

– “Have you tried turning it off and back on again?”

– Very widely used in practice!

11

Deadlock Static Prevention
1. Mutual Exclusion: resources have bounded #owners
– Could always allow access… but probably unsafe ;-(

– However can help e.g. by using MRSW locks

2. Hold-and-Wait: can get Rx and wait for Ry
– Require that we request all resources simultaneously; deny the

request if any resource is not available now

– But must know maximal resource set in advance = hard?

3. No Preemption: keep Rx until you release it
– Stealing a resource generally unsafe (but see later)

4. Circular Wait: cyclic dependency
– Impose a partial order on resource acquisition

– Can work: but requires programmer discipline

– Lock order enforcement rules used in many systems e.g., FreeBSD
WITNESS – static and dynamic orders checked 12

Example: Dining Philosophers

• 5 philosophers, 5 forks, round table…

13

while(true) { // philosopher i
 think();
 wait(fork[i]);
 wait(fork[(i+1) % 5];
 eat();
 signal(fork[i]);
 signal(fork[(i+1) % 5];
}

while(true) { // philosopher i
 think();
 wait(fork[i]);
 wait(fork[(i+1) % 5];
 eat();
 signal(fork[i]);
 signal(fork[(i+1) % 5];
}

Semaphore forks[] = new Semaphore[5];Semaphore forks[] = new Semaphore[5];

• Possible for everyone to acquire ‘left’ fork

• Q: what happens if we swap order of wait()s?

Example: Dining Philosophers

• (one) Solution: always take lower fork first

14

while(true) { // philosopher i
 think();
 first = MIN(i, (i+1) % 5);
 second = MAX(i, (i+1) % 5);
 wait(fork[first]);
 wait(fork[second];
 eat();
 signal(fork[second]);
 signal(fork[first]);
}

while(true) { // philosopher i
 think();
 first = MIN(i, (i+1) % 5);
 second = MAX(i, (i+1) % 5);
 wait(fork[first]);
 wait(fork[second];
 eat();
 signal(fork[second]);
 signal(fork[first]);
}

Semaphore forks[] = new Semaphore[5];Semaphore forks[] = new Semaphore[5];

• Now even if 0, 1, 2, 3 are held, 4 will not acquire final fork.

Deadlock Dynamic Avoidance

• Prevention aims for deadlock-free “by design”

• Deadlock avoidance is a dynamic scheme:
– Assumption: We know maximum possible resource allocation

for every process / thread

– Assumption: A process granted all desired resources will
complete, terminate, and free its resources

– Track actual allocations in real-time

– When a request is made, only grant if guaranteed no deadlock
even if all others take max resources

• E.g. Banker’s Algorithm
– Not really useful in general as need a priori knowledge of

#processes/threads, and their max resource needs.

15

Deadlock detection (anticipation)

• Deadlock detection is a dynamic scheme that determines if deadlock
exists (or would exist if we granted a request)
– Principle: At a some moment in execution, examine resource allocations and

graph

– Determine if there is at least one plausible sequence of events in which all
threads could make progress

– I.e., check that we are not in an unsafe state in which no further sequences can
complete without deadlock

• When only a single instance of each resource, can explicitly check for a
cycle:
– Keep track which object each thread is waiting for

– From time to time, iterate over all threads and build the resource allocation
graph

– Run a cycle detection algorithm on graph O(n2)

• Or use Banker’s Alg if have multi-instance resources (more difficult)
16

Banker’s Algorithm (1)

• Have m distinct resources and n threads

• V[0:m-1], vector of currently available resources

• A, the m x n resource allocation matrix, and
R, the m x n (outstanding) request matrix
– Ai,j is the number of objects of type j owned by i

– Ri,j is the number of objects of type j needed by i

• Proceed by successively marking rows in A for
threads that are not part of a deadlocked set
– If we cannot mark all rows of A we have deadlock

17

Optimistic assumption: if we can fulfill thread i’s request Ri, then it will run

to completion and release held resources for other threads to allocate.

Optimistic assumption: if we can fulfill thread i’s request Ri, then it will run

to completion and release held resources for other threads to allocate.

Banker’s Algorithm (2)

• Mark all zero rows of A (since a thread holding zero
resources can’t be part of deadlock set)

• Initialize a working vector W[0:m-1] to V
–W[] describes any free resources at start, plus any

resources released by a hypothesized sequence of
satisfied threads freeing and terminating

• Select an unmarked row i of A s.t. R[i] <= W
– (i.e. find a thread who’s request can be satisfied)

– Set W = W + A[i]; mark row i, and repeat

• Terminate when no such row can be found
– Unmarked rows (if any) are in the deadlock set 18

Banker’s Algorithm: Example 1

• Five threads and three resources (none free)

19

 X Y Z X Y Z X Y Z
T0 0 1 0 0 0 0 0 0 0
T1 2 0 0 2 0 2
T2 3 0 3 0 0 0
T3 2 1 1 1 0 0
T4 0 0 1 0 0 2

 X Y Z X Y Z X Y Z
T0 0 1 0 0 0 0 0 0 0
T1 2 0 0 2 0 2
T2 3 0 3 0 0 0
T3 2 1 1 1 0 0
T4 0 0 1 0 0 2

 A R V A R V

• Find an unmarked row, mark it, and update W

• T0, T2, T3, T4, T1

 W W

X Y Z
0 0 0
X Y Z
0 0 0
X Y Z
0 1 0
X Y Z
0 1 0
X Y Z
3 1 3
X Y Z
3 1 3
X Y Z
5 2 4
X Y Z
5 2 4
X Y Z
5 2 5
X Y Z
5 2 5
X Y Z
7 2 5
X Y Z
7 2 5

At the end of the algorithm, all rows are marked:
the deadlock set is empty.

At the end of the algorithm, all rows are marked:
the deadlock set is empty.

Banker’s Algorithm: Example 2

• Five threads and three resources (none free)

20

 X Y Z X Y Z X Y Z
T0 0 1 0 0 0 0 0 0 0
T1 2 0 0 2 0 2
T2 3 0 3 0 0 1
T3 2 1 1 1 0 0
T4 0 0 1 0 0 2

 X Y Z X Y Z X Y Z
T0 0 1 0 0 0 0 0 0 0
T1 2 0 0 2 0 2
T2 3 0 3 0 0 1
T3 2 1 1 1 0 0
T4 0 0 1 0 0 2

 A R V A R V

• One minor tweak to T2’s request vector…

 W W

X Y Z
0 0 0
X Y Z
0 0 0
X Y Z
0 1 0
X Y Z
0 1 0

Cannot find a row in
R <= W!!

Now wants one unit
of resource Z

Threads T1, T2, T3 &
T4 in deadlock set

Deadlock recovery

• What can we do when we detect deadlock?

• Simplest solution: kill something!
– Ideally someone in the deadlock set ;-)

• Brutal, and not guaranteed to work
– But sometimes the best (only) thing we can do

– E.g. Linux OOM killer (better than system reboot?)

– … Or not – often kills the X server!

• Could also resume from checkpoint
– Assuming we have one

• In practice computer systems seldom detect or recover
from deadlock: rely on programmer.

21Note: “kill someone” breaks the no preemption precondition for deadlock.Note: “kill someone” breaks the no preemption precondition for deadlock.

Livelock

• Deadlock is at least ‘easy’ to detect by humans
– System basically blocks & stops making any progress

• Livelock is less easy to detect as threads continue to run…
but do nothing useful

• Often occurs from trying to be clever, e.g.:

22

// thread 2
lock(Y);
 ...
 while(!trylock(X)) {
 unlock(Y);
 yield();
 lock(Y);
 }
 ...

// thread 2
lock(Y);
 ...
 while(!trylock(X)) {
 unlock(Y);
 yield();
 lock(Y);
 }
 ...

// thread 1
lock(X);
 ...
 while (!trylock(Y)) {
 unlock(X);
 yield();
 lock(X);
 }
 ...

// thread 1
lock(X);
 ...
 while (!trylock(Y)) {
 unlock(X);
 yield();
 lock(X);
 }
 ...

Livelock if both
threads get here
simultaneously

Scheduling and thread priorities
• Which thread should run when >1 runnable? E.g., if:
– A thread releases a contended lock and continues to run

– CV broadcast wakes up several waiting threads

• Many possible scheduling policies; e.g.,
– Round robin – rotate between threads to ensure progress

– Fixed priorities – assign priorities to threads, schedule highest–
e.g., real-time > interactive > bulk > idle-time

– Dynamic priorities – adjust priorities to balance goals – e.g.,
boost priority after I/O to improve interactivity

– Gang scheduling – schedule for patterns such as P-C

– Affinity – schedule for efficient resource use (e.g., caches)

• Goals: latency vs. throughput, energy, “fairness”, …
– NB: These competing goals cannot generally all be satisfied

23

Priority inversion

• Another liveness problem…
– Due to interaction between locking and scheduler

• Consider three threads: T1, T2, T3
– T1 is high priority, T2 medium priority, T3 is low

– T3 gets lucky and acquires lock L…

– … T1 preempts T3 and sleeps waiting for L…

– … then T2 runs, preventing T3 from releasing L!

– Priority inversion: despite having higher priority and no shared
lock, T1 waits for lower priority thread T2

• This is not deadlock or livelock
– But not desirable (particularly in real-time systems)!

– Disabled Mars Pathfinder robot for several months
24

Priority inheritance

• Typical solution is priority inheritance:
– Temporarily boost priority of lock holder to that of the

highest waiting thread

– T3 would have run with T1’s priority while holding a lock
T1 was waiting for – preventing T2 from preempting T3

– Concrete benefits to system interactivity

– (some RT systems (like VxWorks) allow you specify on a
per-mutex basis [to Rover’s detriment ;-])

• Windows “solution”
– Check if any ready thread hasn’t run for 300 ticks

– If so, double its quantum and boost its priority to 15

–☺ 25

Problems with priority inheritance
• Hard to reason about resulting behaviour: heuristic

• Works for locks
– More complex than it appears: propagation might need to be

propagated across chains containing multiple locks

– (How might we handle reader-writer locks?)

• How about condition synchronisation, res. allocation?
– With locks, we know what thread holds the lock

– Semaphores do not record which thread might issue a signal or
release an allocated resource

– Must compose across multiple waiting types: e.g., “waiting for a
signal while holding a lock”

• Where possible, avoid the need for priority inheritance
– Avoid sharing between threads of differing priorities

26

Summary + next time

• Liveness properties

• Deadlock
– Requirements

– Resource allocation graphs and detection

– Prevention – the Dining Philosophers Problem – and recovery

• Thread priority and the scheduling problem

• Priority inversion

• Priority inheritance

• Next time:
– Concurrency without shared data

– Active objects; message passing

– Composite operations; transactions

– ACID properties; isolation; serialisability 27

	Slide 1
	Reminder from last time
	From last time: primitives summary
	This time
	Liveness properties
	Deadlock
	Requirements for deadlock
	Resource allocation graphs
	Resource allocation graphs
	Slide 10
	Dealing with deadlock
	Deadlock prevention
	Example: Dining Philosophers_clipboard0
	Example: Dining Philosophers
	Deadlock avoidance
	Deadlock detection
	Deadlock detection
	Deadlock detection algorithm
	Deadlock detection example 1
	Deadlock detection example 2
	Deadlock recovery
	Livelock
	Scheduling and thread priorities
	Priority inversion
	Priority inheritance
	Problems with priority inheritance
	Summary + next time

