
Concurrent systems
Lecture 4: CCR, monitors, and

concurrency in practice.

Dr David J Greaves
(Thanks to Dr Robert N. M. Watson)
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Reminder from last time

• Implementing mutual exclusion: hardware 
support for atomicity and inter-processor 
interrupts

• Semaphores for mutual exclusion, condition 
synchronisation, and resource allocation

• Two-party and generalised producer-
consumer relationships

• Invariants and locks
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From last time: Semaphores summary

• Powerful abstraction for implementing concurrency control:
– mutual exclusion & condition synchronization

• Better than read-and-set()… but correct use requires 
considerable care 
– e.g. forget to wait(), can corrupt data
– e.g. forget to signal(), can lead to infinite delay
– generally get more complex as add more semaphores

• Used internally in some OSes and libraries, but generally 
deprecated for other mechanisms…
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Semaphores are a low-level implementation 
primitive – they say what to do, rather than 

describing programming goals

Semaphores are a low-level implementation 
primitive – they say what to do, rather than 

describing programming goals



This time

• Multi-Reader Single-Writer (MRSW) locks
– Starvation and fairness

• Alternatives to semaphores/locks:
– Conditional critical regions (CCRs)
– Monitors
– Condition variables
– Signal-and-wait vs. signal-and-continue semantics

• Concurrency primitives in practice
• Concurrency primitives wrap-up
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Multiple-Readers Single-Writer (MRSW)

• Another common synchronisation paradigm is MRSW
– Shared resource accessed by a set of threads

• e.g. cached set of DNS results 

– Safe for many threads to read simultaneously, but a writer 
(updating) must have exclusive access

– MRSW locks have read lock and write lock operations
– Mutual exclusion vs. data stability

• Simple implementation uses two semaphores
• First semaphore is a mutual exclusion lock (mutex)

– Any writer must wait to acquire this
• Second semaphore protects a reader count

– Reader count incremented whenever a reader enters
– Reader count decremented when a reader exits
– First reader acquires mutex; last reader releases mutex.
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Simplest MRSW solution

// a writer thread 
wait(wSem);
.. perform update to data
signal(wSem);

// a writer thread 
wait(wSem);
.. perform update to data
signal(wSem);

// a reader thread
wait(rSem);
nr = nr + 1;
if (nr == 1)  // first in
  wait(wSem); 
signal(rSem);
.. read data
wait(rSem);
nr = nr - 1;
if (nr == 0) // last out 
  signal(wSem);
signal(rSem);

// a reader thread
wait(rSem);
nr = nr + 1;
if (nr == 1)  // first in
  wait(wSem); 
signal(rSem);
.. read data
wait(rSem);
nr = nr - 1;
if (nr == 0) // last out 
  signal(wSem);
signal(rSem);

int nr = 0;                 // number of readers 
rSem   = new Semaphore(1);  // protects access to nr
wSem   = new Semaphore(1);  // protects writes to data

int nr = 0;                 // number of readers 
rSem   = new Semaphore(1);  // protects access to nr
wSem   = new Semaphore(1);  // protects writes to data

Code for writer is simple…

.. but reader case more complex: must 
track number of readers, and acquire or 

release overall lock as appropriate
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Simplest MRSW solution

• Solution on previous slide is “correct”
– Only one writer will be able to access data structure, 

but – providing there is no writer – any number of 
readers can access it

• However writers can starve
– If readers continue to arrive, a writer might wait 

forever (since readers will not release wSem)
– Would be fairer if a writer only had to wait for all 

current readers to exit…
– Can implement this with an additional semaphore.
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A fairer MRSW solution

// a writer thread 
wait(turn);
wait(wSem);
.. perform update to data
signal(turn);
signal(wSem);

// a writer thread 
wait(turn);
wait(wSem);
.. perform update to data
signal(turn);
signal(wSem);

// a reader thread
wait(turn);
signal(turn);
wait(rSem);
nr = nr + 1;
if (nr == 1)  // first in
  wait(wSem); 
signal(rSem);
.. read data
wait(rSem);
nr = nr - 1;
if (nr == 0) // last out 
  signal(wSem);
signal(rSem);

// a reader thread
wait(turn);
signal(turn);
wait(rSem);
nr = nr + 1;
if (nr == 1)  // first in
  wait(wSem); 
signal(rSem);
.. read data
wait(rSem);
nr = nr - 1;
if (nr == 0) // last out 
  signal(wSem);
signal(rSem);

int nr = 0;                 // number of readers 
rSem   = new Semaphore(1);  // protects access to nr
wSem   = new Semaphore(1);  // protects writes to data
turn   = new Semaphore(1);  // write is awaiting a turn

int nr = 0;                 // number of readers 
rSem   = new Semaphore(1);  // protects access to nr
wSem   = new Semaphore(1);  // protects writes to data
turn   = new Semaphore(1);  // write is awaiting a turn

Once a writer tries to enter,
it will acquire turn… 

… which prevents any further 
readers from entering
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Conditional Critical Regions

shared int A, B, C; 
region A, B {
    await( /* arbitrary condition */); 
    // critical code using A and B
}

shared int A, B, C; 
region A, B {
    await( /* arbitrary condition */); 
    // critical code using A and B
}
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• Compiler automatically declares and manages underlying primitives 
for mutual exclusion or synchronization 
– e.g. wait/signal, read/await/advance, … 

• Easier for programmer (c/f previous implementations).

• Implementing synchronisation with locks is difficult
• Only the developer knows what data is protected by 

which locks
• One early (1970s) effort to address this problem was CCRs

– Variables can be explicitly declared as ‘shared’
– Code can be tagged as using those variables, e.g.



CCR example: Producer-Consumer

• Explicit (scoped) declaration of  critical sections
– automatically acquire mutual exclusion lock on region entry

• Powerful await(): any evaluable predicate. 
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// producer thread
while(true) {
  item = produce(); 
  region in, out, buffer {
    await((in–out) < N);
    buffer[in % N] = item;
    in = in + 1;
  }
}

// producer thread
while(true) {
  item = produce(); 
  region in, out, buffer {
    await((in–out) < N);
    buffer[in % N] = item;
    in = in + 1;
  }
}

// consumer thread 
while(true) {
  region in, out, buffer {  
    await((in-out) > 0); 
    item = buffer[out % N]; 
    out  = out + 1;
  }
  consume(item);
}

// consumer thread 
while(true) {
  region in, out, buffer {  
    await((in-out) > 0); 
    item = buffer[out % N]; 
    out  = out + 1;
  }
  consume(item);
}

shared int buffer[N]; 
shared int in = 0; shared int out = 0;
shared int buffer[N]; 
shared int in = 0; shared int out = 0;



CCR pros and cons

• On the surface seems like a definite step up
– Programmer focuses on variables to be protected, 

compiler generates appropriate semaphores (etc)
– Compiler can also check that shared variables are 

never accessed outside a CCR
– (still rely on programmer annotating correctly ?)

• But await(<expr>) is problematic…
– What to do if the (arbitrary) <expr> is not true? 
– very difficult to work out when it becomes true?
– Solution was to leave region & try to re-enter: this is 

busy waiting (aka spinning), which is very inefficient…
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Monitors

• Monitors are similar to CCRs (implicit mutual exclusion), 
but modify them in two ways
– Waiting is limited to explicit condition variables
– All related routines are combined together, along with 

initialization code, in a single construct
• Idea is that only one thread can ever be executing 

‘within’ the monitor
– If a thread calls a monitor method, it will block (enqueue) 

if another thread is holding the monitor
– Hence all methods within the monitor can proceed on the 

basis that mutual exclusion has been ensured
• Java’s synchronized primitive implements monitors.
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Example Monitor syntax
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monitor <foo> {

 // declarations of shared variables 

 // set of procedures (or methods) 
 procedure P1(...) { ... }
 procedure P2(...) { ... }
 ...
 procedure PN(...) { ... }

 { 
    /* monitor initialization code */ 
 }

}

monitor <foo> {

 // declarations of shared variables 

 // set of procedures (or methods) 
 procedure P1(...) { ... }
 procedure P2(...) { ... }
 ...
 procedure PN(...) { ... }

 { 
    /* monitor initialization code */ 
 }

}

All related data and 
methods kept together

Shared variables can be 
initialized here

Invoking any procedure 
causes an [implicit] mutual 
exclusion lock to be taken

Shared variables only 
accessible from within 

monitor methods



Condition Variables (Queues)
• Mutual exclusion not always sufficient

– Condition synchronization -- e.g., wait for a condition to occur
• Monitors allow condition variables (aka condition queues)

– Explicitly declared and managed by programmer
– NB: No integrated counter – not a stateful semaphore!
– Support three operations:
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wait(cv) { 
   suspend thread and add it to the queue for CV,
   release monitor lock; 
}
signal(cv) { 
   if any threads queued on CV, wake one thread;
}
broadcast(cv) { 
   wake all threads queued on CV;
}

wait(cv) { 
   suspend thread and add it to the queue for CV,
   release monitor lock; 
}
signal(cv) { 
   if any threads queued on CV, wake one thread;
}
broadcast(cv) { 
   wake all threads queued on CV;
}



Monitor Producer-Consumer solution? 
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monitor ProducerConsumer {
 int in, out, buffer[N]; 
 condition notfull = TRUE, notempty = FALSE; 

 procedure produce(item) { 
   if ((in-out) == N) wait(notfull); 
   buffer[in % N] = item; 
   if ((in-out) == 0) signal(notempty);
   in = in + 1; 
 }
 procedure int consume() { 
   if ((in-out) == 0) wait(notempty); 
   item = buffer[out % N]; 
   if ((in-out) == N) signal(notfull);
   out = out + 1;
   return(item);
 }
 /* init */ { in = out = 0; }
}

monitor ProducerConsumer {
 int in, out, buffer[N]; 
 condition notfull = TRUE, notempty = FALSE; 

 procedure produce(item) { 
   if ((in-out) == N) wait(notfull); 
   buffer[in % N] = item; 
   if ((in-out) == 0) signal(notempty);
   in = in + 1; 
 }
 procedure int consume() { 
   if ((in-out) == 0) wait(notempty); 
   item = buffer[out % N]; 
   if ((in-out) == N) signal(notfull);
   out = out + 1;
   return(item);
 }
 /* init */ { in = out = 0; }
}

If buffer is full,
wait for consumer

If buffer was full,
signal the producer

If buffer is empty,
wait for producer

If buffer was empty,
signal the consumer



Does this work?

• Depends on implementation of wait() & signal()
• Imagine two threads, T1 and T2

– T1 enters the monitor and calls wait(C) – this suspends T1, 
places it on the queue for C, and unlocks the monitor

– Next T2 enters the monitor, and invokes signal(C)
– Now T1 is unblocked (i.e. capable of running again)… 
– … but can only have one thread active inside a monitor!

• If we let T2 continue (signal-and-continue), T1 must queue for 
re-entry to the monitor 
– And no guarantee it will be next to enter

• Otherwise T2 must be suspended (signal-and-wait), allowing 
T1 to continue…
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Note: C is either of our two condition variables.



Signal-and-Wait (“Hoare Monitors”)

• Consider the queue E to enter the monitor
– If monitor is occupied, threads are added to E
– May not be FIFO, but should be fair.

• If thread T1 waits on C, added to queue C
• If T2 enters monitor & signals, waking T1

– T2 is added to a new queue S “in front of” E
– T1 continues and eventually exits (or re-waits)

• Some thread on S chosen to resume 
– Only admit a thread from E when S is empty.
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Note: C is one of our two condition queues (aka condition variables).

Note: E is the thread entry queue associated with the mutex present in all monitors.

Note: S is a further entry queue for this form of monitor.



Signal-and-Wait pros and cons

• We call signal() exactly when condition is true, then 
directly transfer control to waking thread
– Hence condition will still be true! 

• But more difficult to implement… 
• And can be complex to reason about (a call to signal may 

or may not result in a context switch)
– Hence we must ensure that any invariants are maintained 

at time we invoke signal()
• With these semantics, our example is broken:

– We signal() before incrementing in/out. 
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Monitor Producer-Consumer solution? 
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monitor ProducerConsumer {
 int in, out, buf[N]; 
 condition notfull,notempty; 

 procedure produce(item) { 
   if ((in-out) == N) wait(notfull); 
   buffer[in % N] = item; 
   if ((in-out) == 0) signal(notempty);
   in = in + 1; 
 }
 procedure int consume() { 
   if ((in-out) == 0) wait(notempty); 
   item = buffer[out % N]; 
   if ((in-out) == N) signal(notfull);
   out = out + 1;
   return(item);
 }
 /* init */ { in = out = 0; }
}

monitor ProducerConsumer {
 int in, out, buf[N]; 
 condition notfull,notempty; 

 procedure produce(item) { 
   if ((in-out) == N) wait(notfull); 
   buffer[in % N] = item; 
   if ((in-out) == 0) signal(notempty);
   in = in + 1; 
 }
 procedure int consume() { 
   if ((in-out) == 0) wait(notempty); 
   item = buffer[out % N]; 
   if ((in-out) == N) signal(notfull);
   out = out + 1;
   return(item);
 }
 /* init */ { in = out = 0; }
}

Same code as slide 15Same code as slide 15

RaceRace

RaceRace

If buffer is full,
wait for consumer

If buffer was full,
signal the producer

If buffer is empty,
wait for producer

If buffer was empty,
signal the consumer



Signal-and-Continue

• Alternative semantics introduced by Mesa 
programming language (Xerox PARC).

• An invocation of signal() moves a thread from the 
condition queue C to the entry queue E
– Invoking threads continues until exits (or waits).

• Simpler to build…  but now not guaranteed that 
condition holds (is true) when resume!
– Other threads may have executed after the signal, but 

before you continue.
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Signal-and-Continue example (1)
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P1

P2

Thread in monitor

Thread waits for condition

Buffer

Buffer is full - !(not full)

fullfull

C1

Thread waits for monitor

not fullnot full

P1 entersP1 enters
P1 waits 

as !(not 
full)

P1 waits 

as !(not 
full)

C1 entersC1 enters

P2 tries to enter, 

enqueued on E

P2 tries to enter, 

enqueued on E

C1 removes item, 

signals not full

C1 removes item, 

signals not full

fullfull

P1 tries to enter,

enqueued on E

P1 tries to enter,

enqueued on E

P2 inserts item, 

sets !(not full)

P2 inserts item, 

sets !(not full)

P1 wakes up 

despite !(not full)

P1 wakes up 

despite !(not full)

P2 entersP2 enters

Buffer has space - (not full)

With signal-and-continue semantics, 
must use while instead of if in case the 
condition becomes false while waiting

With signal-and-continue semantics, 
must use while instead of if in case the 
condition becomes false while waiting



Signal-and-Continue example (2)

• Consider multiple producer-consumer threads
1. P1 enters. Buffer is full so blocks on queue for C
2. C1 enters.
3. P2 tries to enter; occupied, so queues on E
4. C1 continues, consumes, and signals C (“notfull”)
5. P1 unblocks; monitor occupied, so queues on E
6. C1 exits, allowing P2 to enter
7. P2 fills buffer, and exits monitor
8. P1 resumes and tries to add item – BUG!

• Hence must re-test condition: 
 i.e. while( (in - out) == N) wait(not full);
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Monitor Producer-Consumer solution? 
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monitor ProducerConsumer {
 int in, out, buf[N]; 
 condition notfull, notempty; 

 procedure produce(item) { 
   while ((in-out) == N) wait(notfull); 
   buf[in % N] = item; 
   if ((in-out) == 0) signal(notempty);
   in = in + 1; 
 }
 procedure int consume() { 
   while ((in-out) == 0) wait(notempty); 
   item = buf[out % N]; 
   if ((in-out) == N) signal(notfull);
   out = out + 1;
   return(item);
 }
 /* init */ { in = out = 0; }
}

monitor ProducerConsumer {
 int in, out, buf[N]; 
 condition notfull, notempty; 

 procedure produce(item) { 
   while ((in-out) == N) wait(notfull); 
   buf[in % N] = item; 
   if ((in-out) == 0) signal(notempty);
   in = in + 1; 
 }
 procedure int consume() { 
   while ((in-out) == 0) wait(notempty); 
   item = buf[out % N]; 
   if ((in-out) == N) signal(notfull);
   out = out + 1;
   return(item);
 }
 /* init */ { in = out = 0; }
}

if() replaced with while() for conditionsif() replaced with while() for conditions

While buffer is full,
wait for consumer

If buffer was full,
signal the producer

While buffer is empty,
wait for producer

If buffer was empty,
signal the consumer

With signal-and-continue 
semantics, increment after 

signal does not race.

With signal-and-continue 
semantics, increment after 

signal does not race.



Monitors: summary

• Structured concurrency control
– groups together shared data and methods
– (today we’d call this object-oriented)

• Considerably simpler than semaphores, but still perilous 
in places

• May be overly conservative sometimes: 
– e.g. for MRSW cannot have >1 reader in monitor
– Typically must work around with entry and exit methods 

(BeginRead(), EndRead(), BeginWrite(), etc)
• Exercise: sketch a working MRSW monitor 

implementation.
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Concurrency in practice

• Seen a number of abstractions for concurrency 
control 
– Mutual exclusion and condition synchronization 

• Next let’s look at some concrete examples:
– POSIX pthreads (C/C++ API) 
– FreeBSD kernels
– Java.
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Example: pthreads (1)

• A thread calling lock() blocks if the mutex is held
– trylock() is a non-blocking variant: returns immediately; 

returns 0 if lock acquired, or non-zero if not. 
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int pthread_mutex_init(pthread_mutex_t *mutex, ...);
int pthread_mutex_lock(pthread_mutex_t *mutex); 
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_init(pthread_mutex_t *mutex, ...);
int pthread_mutex_lock(pthread_mutex_t *mutex); 
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

• Standard (POSIX) threading API for C, C++, etc
• mutexes, condition variables, and barriers

• Mutexes are essentially binary semaphores:



Example: pthreads (2)

• No proper monitors: must manually code e.g. 
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• Condition variables are Mesa-style:
int pthread_cond_init(pthread_cond_t *cond, ...); 
int pthread_cond_wait(pthread_cond_t *cond,

  pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_init(pthread_cond_t *cond, ...); 
int pthread_cond_wait(pthread_cond_t *cond,

  pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

pthread_mutex_lock(&M); 
while (!condition)
    pthread_cond_wait(&C,&M);
// do stuff 
if (condition)
    pthread_cond_broadcast(&C);
pthread_mutex_unlock(&M);

pthread_mutex_lock(&M); 
while (!condition)
    pthread_cond_wait(&C,&M);
// do stuff 
if (condition)
    pthread_cond_broadcast(&C);
pthread_mutex_unlock(&M);

Notice: while() and not if() due to 
signal-and-continue semantics



Example: pthreads (3)

28

• Barriers: explicit synchronization mechanism
• Wait until all threads reach some point

• E.g., in discrete event simulation, all parallel threads 
must complete one epoch before any begin on the next

pthread_barrier_init(&B, ..., NTHREADS); 
for(i=0; i<NTHREADS; i++) 
   pthread_create(..., worker, ...);

worker() { 
   while(!done) {  
     // do work for this round 
     pthread_barrier_wait(&B);
   }
}

pthread_barrier_init(&B, ..., NTHREADS); 
for(i=0; i<NTHREADS; i++) 
   pthread_create(..., worker, ...);

worker() { 
   while(!done) {  
     // do work for this round 
     pthread_barrier_wait(&B);
   }
}

int pthread_barrier_init(pthread_barrier_t *b, ...,  N);
int pthread_barrier_wait(pthread_barrier_t *b);
int pthread_barrier_init(pthread_barrier_t *b, ...,  N);
int pthread_barrier_wait(pthread_barrier_t *b);



Example: FreeBSD kernel

• Kernel provides spin locks, mutexes, conditional variables, 
reader-writer + read-mostly locks
– Semantics (roughly) modelled on POSIX threads

• A variety of deferred work primitives
• “Fully preemptive” and highly threaded

– (e.g., interrupt processing in threads)
– Interesting debugging tools
– such as DTrace, lock
– contention measurement,

• lock-order checking
• Further details are in last year’s

lecture 8 ...
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Example: Java synchronization (1)
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public synchronized void myMethod() throws ...{
    // This code runs with the intrinsic lock held.
}

public synchronized void myMethod() throws ...{
    // This code runs with the intrinsic lock held.
}

public void myMethod() throws ...{
    synchronized(this) {     
        // This code runs with the intrinsic lock held.
}}

public void myMethod() throws ...{
    synchronized(this) {     
        // This code runs with the intrinsic lock held.
}}

• Inspired by monitors – objects have intrinsic locks
• Synchronized methods:

• Synchronized statements:

• Method return / statement exit release lock.
• Locks are reentrant: a single thread can reenter synchronized statements/methods 

without waiting.
• synchronized() can accept other objects than this.



Example: Java synchronization (2)

• Objects have condition variables for guarded blocks
• wait() puts the thread to sleep:

• notify() and notifyAll() wake threads up:

• As with Mesa, signal-and-continue semantics
• As with locks, can name object (thatObject.wait())
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public synchronized void waitDone() {
    while (!done) {
        wait();
    }
}

public synchronized void waitDone() {
    while (!done) {
        wait();
    }
}

public synchronized void notifyDone() {
    done = true;
    notifyAll();
}

public synchronized void notifyDone() {
    done = true;
    notifyAll();
}



Example: Java synchronization (3)

• Java also specifies memory consistency and atomicity 
properties that make some lock-free concurrent access safe – 
if used very carefully
– We will consider lock-free structures later in the term

• java.util.concurrent (especially as of Java 8) includes many 
higher-level primitives –for example, thread pools, concurrent 
collections, semaphores, cyclic barriers, …

• Because Java is a type-safe, managed language, it is a much 
safer place to experiment with concurrent programming than 
(for example) C.
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Concurrency Primitives: Summary

• Concurrent systems require means to ensure:
– Safety (mutual exclusion in critical sections), and
– Progress (condition synchronization)

• Spinlocks (busy wait); semaphores; MRSWs, CCRs, and 
monitors
– Signal-and-Wait vs. Signal-and-Continue

• Many of these are used in practice
– Subtle minor differences can be dangerous
– Much care required to avoid bugs, especially where concurrency 

is a bolt-on to an existing imperative language.
– E.g., failing to take out a lock or failing to release it,
– E.g., “lost wakeups” – signal w/o waiter.
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Summary + next time

• Multi-Reader Single-Writer (MRSW) locks
• Alternatives to semaphores/locks:

– Conditional critical regions (CCRs)
– Monitors
– Condition variables
– Signal-and-wait vs. signal-and-continue semantics

• Concurrency primitives in practice
• Concurrency primitives wrap-up

• Next time:
– Problems with concurrency: deadlock, livelock, priorities
– Resource allocation graphs; deadlock {prevention, detection, recovery}
– Priority and scheduling; priority inversion; priority inheritance.
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